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Chapter 0

Accomplishments

Estimating the disturbance or clutter covariance is a centrally important problem in radar space time

adaptive processing (STAP) since estimation of the disturbance or interference covariance matrix plays

a central role on radar target detection in the presence of clutter, noise and a jammer. The distur-

bance covariance matrix should be inferred from training sample observations in practice. Traditional

maximum likelihood (ML) estimators are effective when homogeneous (target free) training data is

abundant but lead to poor estimates, degraded false alarm rates, and detection loss in the regime of

limited training. However, large number of homogeneous training samples are generally not available

because of difficulty of guaranteeing target free disturbance observation, practical limitations imposed

by the spatio-temporal nonstationarity, and system considerations. The problem has been exacerbated

by recent advances that have led to more antenna elements (J) and higher temporal resolution (P )

time epochs resulting in a large dimension (N = JP ).

In this report, we look to address the aforementioned challenges by exploiting physically inspired

constraints into ML estimation. While adding constraints is beneficial to achieve satisfactory perfor-

mance in the practical regime of limited training, it leads to a challenging problem. Unlike uncon-

strained estimators, a vast majority of constrained radar STAP estimators are iterative and expensive

numerically, which prohibits practical deployment. We focus on breaking this classical trade-off be-

tween computational tractability and desirable performance measures, particularly in training starved

regimes. In particular, we exploit both the structure of the disturbance covariance and importantly

the knowledge of the clutter rank to yield a new rank constrained maximum likelihood (RCML)

estimator of clutter/disturbance covariance. We demonstrate that the rank-constrained estimation

problem can in fact be cast in the framework of a tractable convex optimization problem, and derive

closed form expressions for the estimated covariance matrix. In addition, we derive a new covariance

estimator for STAP that jointly considers a Toeplitz structure and a rank constraint on the clutter

component. Past work has shown that in the regime of low training, even handling each constraint

individually is hard and techniques often resort to slow numerically based solutions. Our proposed
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solution leverages the rank constrained ML estimator (RCML) of structured covariances to build a

computationally friendly approximation that involves a cascade of two closed form solutions. Per-

formance analysis using the KASSPER data set (where ground truth covariance is made available)

shows that the proposed RCML estimator vastly outperforms state-of-the art alternatives even for

low training including the notoriously difficult regime of K ≤ N training regimes and for the exper-

iments considering real-world scenarios such as target detection performance and the case that some

of training samples are corrupted by target information.

Finally, we address the problem of working with inexact physical radar parameters under a practical

radar environment. As shown in this report, employing practical constraints such as a rank of the

clutter subspace and a condition number of disturbance covariance leads to a practically powerful

estimator as well as a closed form solution. While the rank and the condition number are very effective

constraints, often practical non-ideality makes it difficult to be known precisely using physical models.

We propose a robust covariance estimation method via an expected likelihood (EL) approach. We

analyze covariance estimation algorithms under three different cases of imperfect constraints: 1) only

rank constraint, 2) both rank and noise power constraint, and 3) condition number constraint. For

each case, we formulate estimation of the constraint as an optimization problem with the expected

likelihood criterion and formally derive and prove a significant analytical result such as uniqueness of

the solution. Through experimental results from a simulation model and the KASSPER data set, we

show the estimator with optimal constraints obtained by the EL approach outperforms alternatives

in the sense of a normalized signal-to-interference and noise ratio (SINR).
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Chapter 1

Rank Constrained ML Estimation

of Structured Covariance Matrices

1.1 Summary

Estimating the disturbance or clutter covariance is a centrally important problem in radar space time

adaptive processing (STAP). Traditional maximum likelihood (ML) estimators are effective when

training data is abundant but lead to poor estimates, degraded false alarm rates, and detection loss

in the realistic regime of limited training. The problem is exacerbated by recent advances which

have led to high dimensionality N of the observations arising from increased antenna elements (J)

as well as higher temporal resolution (P time epochs and finally N = JP ). This work introduces

physically inspired constraints into ML estimation. In particular, we exploit both the structure of the

disturbance covariance and importantly the knowledge of the clutter rank to yield a new rank con-

strained maximum likelihood (RCML) estimator of clutter/disturbance covariance. We demonstrate

that the rank-constrained estimation problem can in fact be cast in the framework of a tractable

convex optimization problem, and derive closed form expressions for the estimated covariance matrix.

Performance analysis using the KASSPER data set (where ground truth covariance is made avail-

able) shows that the proposed estimator vastly outperforms state-of-the art alternatives in the sense

of higher normalized signal to interference and noise ratio (SINR). Crucially the proposed RCML

estimator can excel even for low training including the notoriously difficult regime of K ≤ N training

samples.
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Figure 1.1: The target and interference scenario in an airborne radar.

1.2 Introduction

1.2.1 Spatio-Temporal Adaptive Processing in Radar

the radar receiver front end consists of an array of J antenna elements, which receives signals from

targets, clutter, and jammers. These reflections induce a voltage at each element of the antenna array,

which constitutes the measured array data at a given time instant. Snapshots of the measured data

collected at P successive time epochs give rise to the spatio-temporal nature of the received radar

data. The spatio-temporal product JP = N is defined to be the system dimensionality. Fig. 1.1 uses

the angle-Doppler space to illustrate the need for space-time adaptive processing (STAP). A target at

a specific angle and traveling at a specific velocity (corresponding to a Doppler frequency) occupies a

single point in this space. A jammer originates from a particular angle but is temporally (in Doppler

domain) white and the clutter occupies a ridge in this 2-D space. Consequently the target signal is

masked by white jammer in Doppler domain and the clutter in spatial domain and therefore, carrying

out merely temporal (Doppler domain) or spatial (angle domain) processing fails to separate the target

from the interference [1]. On the other hand, joint domain processing in angle and Doppler enables

target detection as shown in Fig. 1.1.

The target detection problem can be cast in the framework of a statistical hypothesis test of the

form

H0 : x = d = c + j + n (1.1)

H1 : x = αs(θt, ft) + d = αs(θt, ft) + c + j + n (1.2)

6

DISTRIBUTION A: Approved for public release



where x ∈ CJP×1 is a vector form of the received data under either hypothesis, d represents the

overall disturbance which is the sum of c, clutter, j, jammers, and n, the background white noise.

The vector s is a known spatio-temporal steering vector that represents the signal returned from the

target for a specific angle and Doppler and α is the unknown target complex amplitude.

The whiten-and-match filter (MF) for detecting a rank-1 signal is the optimum processing method

for Gaussian interference statistics. It is given by [2]

w =
R−1
d s√

sHR−1
d s

⇒ ΛMF =
|sHR−1

d x|2

sHR−1
d s

H1

≷
H0

λMF (1.3)

where Rd is a known interference covariance matrix. Eq. (1.3) represents the matched filtering of the

whitened data x̆ = R
−1/2
d x and whitened steering vector s̆ = R

−1/2
d s. From Eq. (1.3), it turns out

that the interference covariance matrix Rd is crucial in the detection statistic.

1.2.2 Motivation and Review

Because the covariance matrix plays a crucial role in the detection statistic (see Eq. (1.3)), it is very

important to estimate it reliably. Widrow et al. and Applebaum proposed least-squares method [3] and

maximum signal-to-noise-ratio criterion [4], respectively, using feedback loops, respectively. However,

these methods were slow to converge to the steady-state solution. Reed, Mallet, and Brennan [5]

verified that the sample matrix inverse (SMI) method demonstrated considerably better convergence.

In the sample matrix inverse method, the disturbance covariance matrix can be estimated using K

data ranges for training

R̂d =
1

K

K∑
k=1

xkx
H
k =

1

K
XXH (1.4)

where K is the number of training data we received, xk ∈ CN , N = JP is the kth vector of training

data, and X = [x1 x2 . . . xK ] ∈ CN×N . It is well known that the sample covariance is the uncon-

strained maximum likelihood estimator when K ≥ N . Despite this virtue, there remain fundamental

problems with the SMI approach. First, typically K > N training samples are needed to guarantee

the non-singularity of the estimated covariance matrix. In fact, when K < N the estimate is singular

and cannot be inverted which is highly undesirable in STAP. As much past research as shown [6], the

estimate also does quite poorly in the vicinity of K = N training samples.

large number of homogenous training samples are generally not available [7]. One reason is that it

is hard to guarantee target free disturbance observations. There are also severe practical limitations

imposed by the spatio-temporal nonstationarity of the interference as well as by system considerations

such as bandwidth and fast scanning arrays. It is well known that K = 2N training samples are needed

to keep the performance within 3dB of the optimal processor. For example with J = 11 and P = 32,

the parameters for the Knowledge Aided Sensor Signal Processing Expert Reasoning (KASSPER)

7
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program dataset [8], K = 2JP = 704 training samples are needed. Assuming an instantaneous RF

bandwidth of 500 kHz, this requires wide-sense stationarity over a 400 km range. There are additional

factors which make the training data scarce. They are 1.) system errors like aircraft crabbing and

internal clutter motion [1], 2.) environmental considerations such as strong clutter discretes [9] and

range varying interference spectra and power levels [10], and 3.) outlier contamination of training

data by target-like signals [11].

To overcome the practical issue of lack of generous training, researchers have developed approaches

that reduces the spatio-temporal DOF, which results in reductions in the number of required training

samples and computation cost as well [6]. These works are shown in the Joint Domain Localized

(JDL) processing algorithm [12], the Parametric Adaptive Matched Filter (PAMF) [13] and references

therein, the Multi-Stage Wiener Filter (MSWF) [14], and factored STAP methods [1]. Another

important approach is the Direct Data Domain (D3) approach [15] which is not dependent on any

statistical training. In [16], authors extend the D3 algorithm to include statistical processing.

Finally, using signal processing and statistical learning techniques, covariance matrix estimation

techniques that enforce and exploit particular structure have been pursued. Examples of structure

include persymmetry [17], the Toeplitz property [18, 19, 20], circulant structure [21], multichannel

autoregressive models [13, 22] and physical constraints [23]. The FML method [24] which enforces

special eigenstructure also falls in this category and in fact is shown to be the most competitive

technique experimentally [11, 6]. In particular, the disturbance covariance matrix R represents the

exhibits the following structure

R = σ2I + Rc (1.5)

where Rc denotes the clutter matrix which has a low rank and is positive semi-definite and I is

an identity matrix. Steiner and Gerlach’s FML technique ensures that the estimated covariance

matrix has eigenvalues all greater than σ2 by assuming that its value is known (or at least can be

approximately known a priori) - which is sometimes unrealistic. Recently, the work by Aubry et al [25]

has also improved upon FML by the introduction of a condition number constraint. Other approaches

include Bayesian covariance matrix estimators [26, 27, 28, 29, 30] and the use of knowledge-based

covariance models [31, 32, 33, 34]. Finally, shrinkage estimation methods have been also considered

[35, 36, 37, 38].

1.3 Methods, Assumptions, and Procedures

1.3.1 Overview of Contribution

The principal contribution of our work us to incorporate the rank of the clutter component Rc

explicitly into ML estimation of the disturbance covariance matrix. Under ideal conditions (no mutual

8
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coupling between array elements and no internal clutter motion), Brennan rule [1] states that the rank

of Rc in the airborne linear phased array radar problem is given by

rank(Rc) = J + γ(P − 1) (1.6)

where γ = 2vpT/d is the slope of the clutter ridge, with vp denoting the platform velocity, T denoting

the pulse repetition interval, and d denoting the inter-element spacing. Even if there is mutual coupling

in practice, Rc has rank r which is much less than the spatio-temporal product N = JP in many

practical airborne radar applications. In addition, powerful techniques have been developed [11] to

determine the rank fairly accurately.

We first set up the optimization problem to estimate the disturbance covariance matrix with a

structural constraint on R and the rank constraint on Rc. The estimation problem when seen as an

optimization over R is unfortunately not a convex problem, since neither the cost function nor the

constraints (rank) are convex (elaborated upon in Section 1.3.2). We will however show that using

a transformation of variables, reduction to a convex form is possible and further by invoking KKT

conditions [39] for the resulting convex problems, it is in fact possible to derive a closed form solution.

Akin to FML, we assume that the noise power σ2 is known while setting up and solving the problem.

1.3.2 ML Estimation

Let zi ∈ CN be the ith realization of the target-free (stochastic) disturbance vector and K be the

number of training samples. That is, i = 1, 2, . . . ,K and N = JP . Therefore, under each training

sample, zi, under assumption of zero mean, obeys

f(zi) =
1

πN |R|
exp(−zHi R−1zi) (1.7)

which comes from a zero-mean complex circular Gaussian distribution and R is the N × N distur-

bance covariance matrix. Further, |R| denotes the determinant of R, zHi is the Hermitian (conjugate

transpose) of zi. Let Z be the M ×K complex matrix whose i-th column is the observed vector zi.

Since each observations zi are i.i.d, the likelihood of observing Z given R is given by

f(R)(Z) =
1

πNK
|R|−K exp

(
− tr{ZHR−1Z}

)
(1.8)

=
1

πNK
|R|−K exp

(
− tr{R−1ZZH}

)
(1.9)

=
1

πNK
|R|−K exp

(
−K · tr{R−1S}

)
(1.10)
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where S = 1
KZZH is the well-known sample covariance matrix. Our goal is to find the positive definite

matrix R that maximizes the likelihood function f(R)(Z). The logarithm of the likelihood term is

log f(R)(Z) = −K · tr{R−1S} −K log(|R|)−NK log(π). (1.11)

Maximizing the log-likelihood as a function of R is equivalent to minimizing the function given by

tr{R−1S}+ log(|R|). (1.12)

Therefore, Eq. (1.12) is the cost function of our optimization problem. Since the cost function is not a

convex function in R, we apply a transformation variables i.e., let X = σ2R−1 and S′ =
1

σ2
S. Then,

the revised cost function in the optimization variable X becomes

tr{R−1S}+ log(|R|)

= tr{S′X} − log(| 1

σ2
X|) (1.13)

= tr{S′X} − log(|X|) + log σ2N . (1.14)

Since log σ2N in Eq. (1.14) is a constant, the final cost function to be minimized is

tr{S′X} − log(|X|). (1.15)

Note that tr{S′X} =
N∑
i=1

N∑
j=1

s′jixij is affine and log(|X|) is concave, which implies − log(|X|) is convex.

Therefore, the final cost function, Eq. (1.15) is convex in the variable X.

We now express X and S′ in terms of their eigenvalue decomposition, i.e., X = ΦΛΦH and using

the eigendecompositions, the cost function can be simplified as

dTλ− 1T logλ (1.16)

where d and λ are vectors with entries of eigenvalues of S′ and X respectively. This result is in fact

fairly well known from standard unconstrained ML estimation of non-singular R.

We assume the noise power is known. Then the constraints of the optimization problem are

R = σ2I + Rc

rank(Rc) = r

Rc � 0

R � σ2I

. (1.17)

Since rank(Rc) = r, Rc has r non-negative eigenvalues and the rest eigenvalues are all zero. Hence,
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from Eq. (1.5), R has r eigenvalues which are greater than or equal to σ2 and the rest eigenvalues

equal to σ2. Hence, the eigenvalues of X should be satisfy

λ1 ≤ λ2 ≤ · · · ≤ λr ≤ λr+1 = · · · = λN = 1 (1.18)

Now the final optimization problem can be expressed in vector-matrix form,


min
λ

dTλ− 1T logλ

s.t. Fλ � g

Eλ = h

(1.19)

where F =


U

−I

I

, g =


0

−ε

1

, E =

 0r×r 0r×(N−r)

0(N−r)×r IN−r

, and

h = [0, 0, · · · , 0r, 1, 1, · · · , 1]T . Here, λ, d, h ∈ RN , g ∈ R3N , U, E ∈ RN×N , and F ∈ R3N×N . The

optimization problem (1.19) is obviously a convex optimization problem because the cost function is

a convex function and feasible constraint sets are convex as well.

A closed form solution for (1.19) can in fact be derived using KKT conditions [39] in constrained

optimization. The optimal solution λ? is

λ?i =

 min(1,
1

di
) for i = 1, 2, . . . , r

1 for i = r + 1, r + 2, . . . , N
(1.20)

1.4 Results and Discussions

1.4.1 Experimental Setup and Methods Compared

Data from the L-band data set of the Knowledge Aided Sensor Signal Processing and Expert Reasoning

(KASSPER) program [8] is used for the performance analysis discussed in this section. The KASSPER

data is the result of a significant effort by DARPA to provide a publicly available resource for the

evaluation and benchmarking of radar STAP algorithms. As elaborated in [29], the KASSPER data

set was carefully captured to represent real-world ground clutter and captures variations in underlying

terrain, foliage and urban/manmade structures. Further, the KASSPER data set exhibits two very

desirable characteristics from the viewpoint of evaluating covariance estimation techniques: 1.) the

low-rank structure of clutter in KASSPER has been verified by researchers before [11, 29], and 2.) the

true covariance matrices for each range bin have been made available - this facilitates comparisons via

powerful figures of merit where the theoretical upper/lower bounds are known.

The L-band data set consists of a data cube of 1000 range bins corresponding to the returns
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Table 1.1: KASSPER Dataset-1 parameters
Parameter Value
Carrier Frequency 1240 MHz
Bandwidth (BW) 10 MHz
Number of Antenna Elements 11
Number of Pulses 32
Pulse Repetition Frequency 1984 Hz
1000 Range Bins 35 km to 50 km
91 Azimuth Angles 87◦, 89◦, . . . 267◦

128 Doppler Frequencies -992 Hz, -976.38 Hz, . . ., 992 Hz
Clutter Power 40 dB
Number of Targets 226 ( 200 detectable targets)
Range of Target Dop. Freq. -99.2 Hz to 372 Hz

from a single coherent processing interval from 11(= J) channels and 32(= P ) pulses. Therefore, the

dimension of observations (or the spatio-temporal product) N is 11×32 = 352. Other key parameters

are detailed in Table 2.1. Finally, a clutter rank1 of r = J + P − 1 = 42 was used by our RCML

estimator in all the results to follow, unless explicitly stated otherwise.

We evaluate and compare four different covariance estimation techniques:

• Sample Covariance Matrix: The sample covariance matrix is given in Eq. (1.4). It is well

known that the sample covariance is the unconstrained maximum likelihood estimator under

Gaussian disturbance statistics. Consistent with radar literature [5], we’ll refer to the use of this

technique as SMI.

• Fast Maximum Likelihood: The fast maximum likelihood (FML) [24] uses the structural

constraint of the covariance matrix which is given in Eq. (1.5). The FML method just involves

calculating the eigenvalue decomposition of the sample covariance and perturbing eigenvalues to

conform to the structure in Eq. (1.5). The noise variance σ2 is assumed known or pre-estimated.

FML’s success in radar STAP is widely known [11, 40, 6].

• Leave-one-out shrinkage estimator: Shrinkage estimators are powerful estimators of covari-

ance for high dimensional data that are known to also perturb the eigenstructure of the sample

covariance matrix2 [35] - often to ensure non-singularity of the estimated covariance. While a

variety of shrinkage techniques are known [35, 36, 37, 38], we choose the leave-one-out covariance

matrix estimate (LOOC) shrinkage estimator [41],

R = βdiag(S) + (1− β)S (1.21)

The value of β is determined via a cross-validation technique so that the average likelihood of

1We set clutter ridge parameters so that γ = 1.
2Via this definition, the FML and RCML can also been seen as a special class of shrinkage estimators.
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omitted samples is maximized. We pick this estimator because it is most suited to the problem

at hand and has demonstrated success in the K ≤ N training regime [41].

• Eigencanceler: The eigencanceler (EigC) is based on the eigenanalysis which suggests a small

number of eigenvalues contain all the information about interferences (jammers and clutter), and

therefore, the span of the eigenvectors associated with these significant eigenvalues includes all

the position vectors that comprise the interference signals [42]. Since we assume that the rank

is known a priori, the eigencanceler can be compared with our estimator as we use r dominant

eigenvectors as interference eigenvectors. The covariance matrix can be expressed by

R =
r∑
i=1

piviv
H
i + σ2I (1.22)

where pi and vi are the clutter power and the eigenvector corresponding to r dominant eigen-

values, respectively. For pi � σ2, it follows from [43, 11] that the estimated inverse covariance

matrix can be approximated as R̂−1 ≈ 1

σ2
(I −P) where P =

r∑
i=1

viv
H
i . We apply this inverse

covariance matrix in computing the SINR as well as estimator variance.

• Rank Constrained Maximum Likelihood: Our proposed estimator (abbreviated to RCML)

incorporates the structural constraint and for the first time the information of the rank of the

clutter component.

1.4.2 Experimental Evaluation

The normalized signal to interference and noise ratio (SINR) is used for evaluation the aforementioned

covariance estimation techniques. The SINR is desired to be as high as possible. This figure of merit

is plotted against azimuthal angle as well as Doppler frequency for distinct training regimes, i.e.

low, representative and generous training. We also show the plot of SINR performance versus the

number of training samples. Finally, we also evaluate the robustness of our RCML estimator against

perturbations in the knowledge of the true rank.

Normalized SINR vs. angle and Doppler

The normalized SINR measure [44] is commonly used in the radar literature and is given by

η =
|sHR̂−1s|2

|sHR̂−1RR̂−1s||sHR−1s|
(1.23)

where s is the spatio-temporal steering vector, R̂ is an estimated covariance matrix, and R is the

corresponding true covariance matrix. It is easily seen that 0 < η ≤ 1 and η = 1 if and only if

R̂ = R. Since the steering vector is a function of both azimuthal angle and Doppler frequency, we
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evaluate the normalized SINR in both angle and Doppler domain. This would lead to a SINR surface

as a function of azimuthal angle and Doppler and comparing surface plots across different covariance

estimation techniques is cumbersome. We therefore obtain plots as a function of one variable (i.e. just

angle/Doppler) by marginalizing (averaging) over the other variable. The SINR is plotted in dB. in

all figures in this chapter, that is, SINRdB = 10 log10 η. Therefore, SINRdB ≤ 0.

Fig. 1.2 plots the variation of normalized SINR as a function of the azimuthal angle and the

Doppler frequency for varying number of training samples, K. Specifically, Figs. 1.2 (a) and (b) are

corresponding to K = 300 < N = 352, Figs. 1.2 (c) and (d) plots results for K = 352 = N , likewise

Figs. 1.2 (e),(f) and (g),(h) are corresponding to K = 750 ≈ 2N and K = 3000� N respectively.

Figs. 1.2 (a),(b) and (c), (d) report results for the challenging regime of K ≤ N . When K < N

the sample covariance matrix is not invertible, hence for the results in Figs. 1.2 (a),(b) we used its

pseudo-inverse as a substitute. Unsurprisingly, the sample covariance technique suffers tremendously

when K ≤ N as is evident from Figs. 1.2 (a)-(d). LOOC shrinkage does considerably better than

SMI because it forces a reasonably good eigenstructure. The informed estimators, i.e. FML, EigC,

and RCML perform appreciably well with RCML affording the best overall performance. It is useful

to note that RCML in fact offers about 1 dB improvement over FML.

Even for representative training in Figs. 1.2 (e)-(f), the vastly superior performance of the FML,

EigC, and RCML techniques is apparent. Again, by virtue of incorporating the rank information, the

proposed RCML estimator outperforms the competing methods. Finally, Figs. 1.2 (g)-(h) confirm the

intuition that as training becomes close to asymptotic, the gap between the various methods begins

to decrease - of course, such generous training is typically impossible to obtain in practice. This is

due to the fact that all the covariance matrix estimates considered converge to the true covariance

matrix in the limit of large training data.

Performance vs. number of training samples

While the results in Sections 1.4.2 do explore performance against training to some extent - here we

present bar graphs to explore this issue with a finer granularity. To obtain a single scalar performance

measure as a function of training, averaging was carried out over both the angle and Doppler variables.

Fig. 1.3 (a) and (b) present bar graphs that quantify the SINR and estimator variance (both in

dB) as a function of training samples K, where K is varied from as low as 60 to as high as 3000.

Two trends are evident from Fig. 1.3 (a): 1.) as intuitively expected, the SINR values increases

monotonically with an increase in the number of training samples for all methods (except for the

sample covariance technique in the K ≤ N regime which is a well-known phenomena observed in past

work as well [24]) and 2.) the RCML estimator exhibits remarkably good performance in all training

regimes. Similar trends are observed for the estimator variance as well in Fig. 1.3 (b) except that

we see a monotonic decrease instead. Again, the RCML estimator is consistently the best except for
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Figure 1.2: Normalized SINR vs. normalized azimuthal angle and doppler frequency, respectively
(true ranges of azimuth and doppler can be seen in Table 2.1). Sample covariance matrix (SMI),
fast maximum likelihood (FML), LOOC shrinkage estimator (LOOC), eigencanceler (EigC), and rank
constrained maximum likelihood (RCML) estimators are the methods compared. K = 300 is used for
(a) and (b), K = 352 is used for (c) and (d), K = 750 is used for (e) and (f), and finally K = 3000 is
used for (g) and (h).

K = 60 samples where all estimators other than sample covariance are very close and no clear winner

emerges.

Rank Sensitivity

The KASSPER data, the clutter rank conforms to Eq. (1.6) - the Brennan rule. For the parameters

used in our experiments, this would lead to a predicted ideal rank of r = J+P −1 = 42. In a practical

situation, departures from the ideal behavior are expected and hence we explore the performance our

proposed RCML estimator even as incorrect rank information is used.

The results in Fig. 1.4 demonstrate the robustness of RCML to perturbations in the clutter rank.

Fig. 1.4 presents bar graphs that show averaged SINR results for K = 352 and K = 750 training

samples. We determined numerically that the “true” rank of the clutter covariance for the range
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Figure 1.2: Normalized SINR vs. normalized azimuthal angle and doppler frequency, respectively
(true ranges of azimuth and doppler can be seen in Table 2.1). Sample covariance matrix (SMI),
fast maximum likelihood (FML), LOOC shrinkage estimator (LOOC), eigencanceler (EigC), and rank
constrained maximum likelihood (RCML) estimators are the methods compared. K = 300 is used for
(a) and (b), K = 352 is used for (c) and (d), K = 750 is used for (e) and (f), and finally K = 3000 is
used for (g) and (h).

bin of choice was in fact 43 which is a mild departure from the 42 predicted by the Brennan rule.

Comparisons are made between FML and RCML with the difference that seven variants of RCML

are presented - with rank from 34 to 45. As Fig. 1.4 reveals, using the true rank of 43 indeed yields

the best covariance matrix estimator but the penalty of the small departure, i.e. using a rank of 40

to 45 which are close to the true rank 43 leads to a very small performance loss. On the other hand,

Figs. 1.4 also shows variants of the RCML result with a somewhat bigger departure, i.e. a rank of 34.

In this case, the performance of RCML with rank 34 is appreciably lower against using rank values

around the true rank 43. Remarkably, RCML with rank 34 is still competitive with FML. Overall Fig.

1.4 therefore provides two valuable insights: 1.) since rank information is predicted using the Brennan

rule - small departures in practice are possible and our estimator exhibits desirable robustness against

such small perturbations to rank, and 2.) the value of using the rank information is simultaneously
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Figure 1.3: Normalized SINR and Estimator variance vs. the number of training samples. The used
numbers are 60, 100, 200, 250, 300, 352, 750, and 3000 (a) Normalized SINR and (b) Estimator error
variance.

352 750
−5

−4

−3

−2

−1

0

K

average SINR − various rank

 

 

FML
rank−34
rank−40
rank−41
rank−42
rank−43
rank−44
rank−45

Figure 1.4: Normalized SINR of rank constrained maximum likelihood (RCML) for various rank
information

revealed - because RCML with rank 34 is competitive with FML, it shows that FML significantly

underestimates the true rank in these examples.

Practical Merits of the RCML Estimator

The experiments in Section 1.4.2 to Section 1.4.2, however, assume that we have access to homogeneous

training samples, which is often not available in practice. This section provides more realistic and

challenging practical evaluation by means of two new flavors of experimental results: 1.) plots of

probability of detection versus SNR for a variety of detection statistics, and 2.) normalized SINR

performance in the presence of heterogeneous training samples which are corrupted by the target

information. Here, we consider an experimental environment which reflects real-world scenarios by

considering non-homogenous training. We perform two experimental investigations. First, we examine
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if incorporating rank-information really leads to better target detection. Second, robustness to target

contamination in training samples is investigated - while outlier removal techniques have been proposed

[10, 45], in practice target contamination of training data cannot be entirely ruled out. We evaluate

and compare three different covariance estimation techniques, SMI, FML and our proposed RCML. We

show that the RCML estimator can still outperform alternatives in that detection probability is second

only to the theoretic upper bound when the true covariance is known, and the rank information is

invaluable in yielding meaningful estimates even as almost all available training samples are corrupted.

Probability of Detection vs. SNR We apply three test statistics, the normalized matched filter

(NMF), the adaptive matched filter (AMF) [2], and the generalized likelihood ratio test (GLRT) [46].

The test statistics are given by



NMF:
|sHR̂−1e|2

(sHR̂−1s)(eHR̂−1e)

H1

≷
H0

λNMF

AMF:
|sHR̂−1e|2

sHR̂−1s

H1

≷
H0

λAMF

GLRT:
|sHR̂−1e|2

sHR̂−1s
(

1 + 1
K eHR̂−1e

) H1

≷
H0

KλGLRT

(1.24)

where s, R̂, e, and K are the steering vector, the estimated covariance matrix, the observation vector,

and the number of training samples, respectively. The detection probability Pd is defined as the

probability that the value of test statistic is greater than a threshold conditioned on the hypothesis

that the received data includes target information. Therefore, it depends on signal to noise ratio

(SNR, by virtue of s,) and the estimated covariance matrix. Since Pd does not typically admit a

closed form, we first generate a number of samples from the L-band data set of KASSPER program

to determine λ corresponding to the fixed false alarm rate and then employ Monte Carlo simulations

to evaluate Pd corresponding to each estimator for each of the test statistics. We set a constant false

alarm rate to 10−4.

Fig. 1.5 shows the detection probability Pd plotted as a function of SNR for different estimators and

detection statistics. Figs. 1.5 (a) and (b) plot Pd for AMF test, Figs. 1.5 (c) and (d) are corresponding

to the NMF test, and Figs. 1.5 (e) and (f) plots results for the GLRT. We use K = N = 352 and

K = 2N = 704 training samples to estimate the covariance matrix for each of the test statistics.

Figs. 1.5 (a), (c), and (e) are for K = 352 and Figs. 1.5 (b), (d), and (f) are for K = 704. It is

well-known that K = 2N training samples are needed to keep the performance within 3dB. Indeed,

we can see that the sample covariance matrix has about 3dB loss vs. the true covariance matrix in all

of test statistics. The proposed RCML estimator is the closest to the Pd achieved by using the true

covariance matrix (upper bound) and FML follows RCML. As expected, each estimator shows higher

detection probability when K = 2N vs. K = N , i.e. an increase in training. Note finally that the
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Figure 1.5: Probability of detection vs. SNR. Sample covariance matrix (SMI), fast maximum likeli-
hood (FML), rank constrained maximum likelihood (RCML) estimators are the methods compared.
K = 352 is used for (a), (c), and (e) and K = 704 is used for (b), (d), and (f). (a) and (b) are AMF
test performance, (c) and (d) are NMF test performance, and (e) and (f) are GLRT test performance.

RCML estimator performs the best no matter which test statistic is applied and in every regime of

training.

Robustness to Nonhomogeneous Training Samples We investigate two different scenarios to

evaluate robustness to nonhomogeneous training samples. First, we fix the ratio of the number of
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Figure 1.6: Normalized SINR in dB. vs. target intensity α and percentage corruption Pt. Sample
covariance matrix (SMI), fast maximum likelihood (FML), rank constrained maximum likelihood
(RCML) estimators are the methods compared. K = 352 is used for (a) and (b), and K = 704 is used
for (c) and (d).

corrupted samples including target information to target-free samples. This ratio is given by

Pt =
the number of corrupted samples by target information

K(= the number of total training samples)
(1.25)

and the intensity of target signal by α, that is, the received data z can be expressed by

z = αs(θt, ft) + d (1.26)

where d = c + j + n represents the overall disturbance which is the sum of c, clutter, j, jammers, n,

the background white noise, and comes from a zero-mean complex circular Gaussian distribution. s

is a known spatio-temporal steering vector [40] which is drawn from a distribution independent of d.

In particular, we examine performance as the percentage of corrupted samples, i.e., Pt is varied while

keeping a fixed intensity of the target signal, α. Our second investigation involves varying α for a
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fixed Pt.

We use two evaluation measures: the normalized SINR and a trace deviation measure - TRD(R̂).

1.) Normalized SINR: The normalized SINR measure [44] is commonly used in the radar literature

and is given by

η =
|sHR̂−1s|2

|sHR̂−1RR̂−1s||sHR−1s|
(1.27)

where s is the spatio-temporal steering vector, R̂ is an estimated covariance matrix, and R is the true

covariance matrix. It is easily seen that 0 < η ≤ 1 and η = 1 if and only if R̂ = R. The SINR is

plotted in dB. in all figures in this chapter, that is, SINRdB = 10 log10 η. Therefore, SINRdB ≤ 0.

Fig. 1.6 presents bar graphs that show averaged SINRdB results for K = 352 and K = 704

training samples. Because the steering vector is a function of both azimuthal angle and Doppler

frequency, we evaluate the normalized SINR in both angle and Doppler domain and average over

both domains to get the normalized SINR value represented by each bar. Figs. 1.6 (a) and (b) are

corresponding to K = N = 352 and Figs. 1.6 (c) and (d) plots results for K = 2N = 704. In

particular, Figs. 1.6 (a) and (c) plot the variation of the normalized SINR for varying intensity of

the steering vector α, where α is varied from as low as 0 to as high as 50. We fixed Pt = 0.2 in

these plots. Two trends are evident from Figs. 1.6 (a) and (c): 1.) as intuitively expected, the SINR

values decreases monotonically with an increase in α for all methods (except for the sample covariance

technique in the K = N regime) and 2.) the RCML estimator exhibits appreciably good performance

in all training regimes. Figs. 1.6 (b) and (d) plot the SINR performance for varying Pt where α

remains a constant, α = 50. The range of Pt is from 0 (no target corruption) to 1 (all the samples are

corrupted by target information). Similar trends are observed as well in Figs. 1.6 (b) and (d). Again,

the RCML estimator consistently outperforms the other methods. An interesting observation is that

SINRdB drops more rapidly as a function of increasing Pt vs. increasing α, which reveals that Pt is

a more critical factor than α in influencing estimation with heterogeneous training.

2.) TRD(R̂): We define a trace deviation measure - TRD(R̂) = |tr{RR̂−1}/N − 1| that is an

alternate way of evaluating the performance of covariance matrix estimators. Intuitively, we can see

tr{RR̂−1}/N = 1 when R̂ = R. Therefore, we can say the goal of estimation is to tray and keep

TRD(R̂) as small as possible, ideally close to 0. Figs. 1.7 shows plots bar graphs in the same training

regime as Figs. 1.6. We plots values of TRD(R̂) for varying α and Pt and the number of training

samples are K = 352 and K = 704.

We can observe trends similar to those in Fig. 1.6. The TRD values monotonically increase as

α and Pt increase for all methods. The proposed RCML estimator consistently outperforms other

techniques considered in all experiments. Additionally, the merits of RCML in robust estimation are

brought out. The TRD values corresponding to both the sample covariance matrix and the FML

estimator increase quite dramatically with an increase in α and, especially, Pt. However, in the case

of the RCML estimator this increase is more gradual. The TRD values corresponding to RCML in
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Figure 1.7: TRD(R̂) vs. target intensity α and percentage corruption Pt. Sample covariance matrix
(SMI), fast maximum likelihood (FML), rank constrained maximum likelihood (RCML) estimators
are the methods compared. K = 352 is used for (a) and (b), and K = 704 is used for (c) and (d).

Fig. 1.7 (d) are in fact still close to 0 even under severe target corruption, i.e. Pt = 1.

1.5 Conclusions

We developed a new estimator of structured covariance matrices (identity plus a positive semi-definite

component) which employs rank of the positive semi-definite matrix as an explicit constraint in ML

estimation. In radar applications, the rank-deficient component corresponds to the clutter and its

rank can be determined using the Brennan rule for airborne radar interacting with land clutter. We

demonstrated that despite the presence of the challenging rank-constraint, the estimation problem

can in fact be reduced to a convex optimization problem and admits a closed form solution. Exper-

imentally, rank information plays a vital role and rigorous evaluation over the KASSPER data set

establishes merits of the proposed estimator when evaluated via powerful figures of merit such as nor-
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malized SINR and estimator variance. Further, significant practical merits are revealed in challenging

real-world radar detection and estimation set-ups. Future work could consider the incorporation of

more constraints on the clutter/disturbance matrix such as Toeplitz structure as well as the use of

physically inspired probabilistic priors in a Bayesian setting.
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Chapter 2

Efficient Approximation of

Structured Covariance under Joint

Toeplitz and Rank Constraints

2.1 Summary

Disturbance covariance estimation is a centrally important problem in radar space time adaptive

processing (STAP). Because training is invariably scarce, estimators that exploit inherent structure

and physical radar constraints are needed in practice. This chapter develops a new computationally

efficient estimator which jointly enforces a Toeplitz structure and a rank constraint on the structured

interference. Previous work has shown that exact ML estimation of Toeplitz covariance matrix has

no closed form solution and most versions of this problem result in iterative estimators which are

computationally expensive. Our proposed solution focuses on a computationally efficient approxima-

tion and involves a cascade of two closed form solutions. First, we obtain the rank constrained ML

estimator (RCML) whose merits have recently been established firmly for radar STAP. The central

contribution of this chapter is the rank preserving Toeplitz approximation, which we demonstrate can

be modeled as an equality constrained quadratic program and also admits a closed form. Extensive

performance evaluation on both simulated and KASSPER data confirms that the proposed estimator

yields unbeatable performance for radar STAP under the previously stated conditions of rank and

Toeplitz constraints.
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2.2 Introduction

Radar systems using multiple antenna elements that coherently process multiple pulses offer signif-

icant benefits in many applications. The directivity and resolution limits of a single sensor can be

overcome by using an adaptive array of spatially distributed sensors makes multiple temporal snap-

shots processing possible. Specifically, joint adaptive processing in the spatial and temporal domains

[44, 47, 48] called space time adaptive processing (STAP) creates an ability to suppress interference

signals while simultaneously preserving gain on the desired signal. For STAP to be successful though,

interference statistics, in particular the covariance matrix of the disturbance or interference must be

estimated from target free training data, and therefore training plays a pivotal role in adaptive radar

systems.

To obtain accurate estimates of the disturbance covariance matrix, a large number of homoge-

neous (target free) disturbance training samples are required in the absence of any prior knowledge

about the interference environment. A compelling challenge for radar STAP emerges since generous

homogeneous training is often not available in practice [7]. This problem is exacerbated because the

estimation process must be repeated for each range bin of interest. Much recent research in radar

STAP has been proposed to overcome the lack of generous homogeneous training. One approach to

this problem uses a priori information about the radar environment and is widely referred to in the

literature as knowledge-based processing [29, 49, 50, 40, 51, 33, 34, 52]. A subset of this technique

deals with intelligent training selection for reducing both the number of required training samples and

computational cost [40, 12, 6]. Another approach to improve the target detection performance is data

selection screening among the training data to excise potential outliers [53, 54].

Covariance matrix estimation techniques that enforce and exploit specific structure inherent to the

disturbance phenomenon have merit in the regime of extremely limited training data. Examples of

structure include persymmetry [17], eigenstructure [24, 42], circulant structure [21], rank constraint

[55, 56], multichannel autoregressive models [13, 22], physical constraints [23] and so on. In par-

ticular, since the covariance matrix from a stationary stochastic signal is Hermitian and Toeplitz,

estimating Toeplitz covariance benefits many applications such as array processing and time series

analysis. Such a Hermitian Toeplitz matrix models the covariance of a random vector obtained by

sampling a wide sense stationary noise field with a uniform linear array and uncorrelated narrow-band

interferers [18]. The seminal work by Burg et al. [57] proposed an iterative method for estimation

of structured covariance matrices using the ML method in its full generality . Li et al. developed

the asymptotic maximum likelihood (AML) estimation for structured covariance matrices [19] using

the extended invariance principle (EXIP) [58]. Approximation of arbitrary matrices by a (Hermitian)

Toeplitz matrix using matrix decompositions and outer approximations has separately been pursued

in applied mathematics [59, 60, 61, 62]. While the techniques in [59, 60, 61, 62] were not conceived

for signal processing or radar STAP, they can potentially be used in conjunction with classical covari-
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ance estimation. Of particular interest is Al-Homidan’s l1 sequential quadratic programming (SQP)

method to find the nearest symmetric positive semi-definite Toeplitz matrix to given a matrix [59].

2.2.1 Motivation and Challenges

Various estimation and approximation techniques of Toeplitz covariance matrices have been proposed

[63, 64, 65, 66]. It is well known [18] though that there is no closed-form solution for the ML estimation

of a Hermitian Toeplitz covariance matrix. Many Toeplitz covariance estimation techniques need

the assumption of large sample size (i.e. observed training) for computational tractability [19],[66].

In the regime of realistic training, methods rely on numerical optimization (often non-convex), are

computationally involved and hence unsuitable for real-time/practical deployment.

Previous works, notably in statistics [67, 68] (and references therein) have also shown that the rank

of the structured interference can be exploited in a tractable manner. Rank is a powerful constraint

in covariance estimation and can often be determined via underlying radar physics. Under nominal

assumptions, the Brennan rule [1] may be used to determine the rank of the structured interference.

Related work also addresses the problem of determining rank in non-ideal scenarios [69]. Recently,

Kang et al. proposed the rank constrained ML (RCML) estimation of structured covariance matrices

[70] which exploits the knowledge of the radar noise floor. Kang et al. [70] also report another estimator

called RCMLLB for the case when the noise floor is assumed unknown and only a lower bound (LB)

is available. The RCMLLB estimator generalizes the well-known result in statistics [67, 68]. In the

radar context though, the noise variance is assumed known since it can be determined by placing the

radar in receive only mode [71]. Notable contributions which deal with both the rank information

and Toeplitz structure of the covariance matrix jointly includes the iterated Toeplitz approximation

method (ITAM) [72] proposed by Wilkes and Hayes and the iterative approach by Forster et al. [65].

Both approaches are based on a computationally expensive iterative procedure. The ITAM estimator

in particular has been shown to be effective under very low training because of its ability to exploit

structure but does not yield scalable performance improvements as realistic or generous training is

made available.

2.2.2 Our contributions

It may be inferred that for adequate performance under limited training, computationally involved

estimators such as ITAM [72] are needed but online covariance estimation is often needed in near

real-time. While fast, closed form estimators such as AML [19] can be used, they do not excel

under low or realistic training. Our contribution aims to break this classical trade-off. We develop

a computationally efficient approximation of structured covariance under joint Toeplitz and rank

(EASTR) constraints. Specifically, our key contributions are listed next.
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• Analytically tractable framework for exploiting both Toeplitz structure and the

rank of the structured interference. Our proposed estimator, i.e. EASTR, satisfies both

Toeplitz structure property (at least approximately) and the rank information of the structured

interference at the same time. Decades of research has shown that enforcing even each constraint

individually can be quite onerous (e.g. rank is a non-convex constraint and no known closed form

exists under the Toeplitz constraint for all training). The rank constrained ML estimation has

been achieved recently though [70] via a transformation of variables. However, this does not

apply when the Toeplitz constraint is added. We propose to decouple the rank and Toeplitz

constraints, which lends analytical tractability. Crucially, the EASTR solution does not need

iterative steps like ITAM and as will be established in Section 2.4, Furthermore, our results

demonstrate that EASTR consistently outperforms ITAM.

• Computationally efficient and fast estimation and approximation. Our proposed

method, EASTR, essentially involves a cascade of two steps where a closed form solution is

available in each step. First a closed form solution using maximum likelihood employing the

rank constraint is obtained from the RCML [70] estimator. Next, we propose a new method to

perturb the eigenvalues of the RCML estimator in a rank preserving manner so as to impose

the Toeplitz structure. We formulate a new quadratic programming (QP) optimization problem

that solves for the eigenvalues while incorporating Toeplitz constraints and demonstrate that

this problem also admits a closed form solution.

• Experimental insights and improved performance in low training regimes. The merits

of EASTR are also verified experimentally over both simulated data and realistic data sets

such as Knowledge Aided Sensor Signal Processing and Expert Reasoning (KASSPER). ITAM

works well particularly in low training regimes but is numerically expensive. The asymptotic

ML estimation gives us a fast closed form solution but shows good performances only in high

training regimes. EASTR excels across all training regimes while still permitting closed form

solutions attractive for practical deployment.

We consider two cases: 1.) when the Toeplitz constraint is satisfied exactly, we obtain the exact

Toeplitz estimate satisfying the rank constraint and Toeplitz property and 2.) when the Toeplitz

constraint is not exactly satisfied, we make slight modification on the Toeplitz constraint and derive a

modified optimization problem to obtain approximately Toeplitz estimate. In practice, the available

data dictates which of the two cases in invoked. Experimental investigation shows that the EASTR

can outperform alternatives in the sense of 1.) normalized SINR and 2.) the probability of detection,

and 3.) a newly proposed trace deviation measure.

27

DISTRIBUTION A: Approved for public release



2.3 Methods, Assumptions, and Procedures

The maximum likelihood covariance estimate R is one which maximizes the likelihood function based

on a zero-mean complex circular Gaussian distribution:

f(R)(Z) =
1

πNK
|R|−K exp

(
− tr{ZHR−1Z}

)
(2.1)

under both Toeplitz and rank constraints. In (2.1), K is the number of training samples, N is the

dimension of observations, and Z is an N × K matrix whose each column is an i.i.d. observation

vector. With some algebraic manipulations, the final optimization problem may be written as



min
R

tr{R−1S}+ log(|R|)

s.t. R = σ2I + Rc

rank(Rc) = r

Rc ∈ T

(2.2)

where S = 1
KZZH is the sample covariance matrix, Rc denotes the interference covariance matrix, I

is an N × N identity matrix, and σ2 is the radar noise floor which can be readily determined using

standard techniques [71], and lastly T is the set of all N ×N Hermitian positive semi-definite Toeplitz

matrices,

T = {T : T ∈ CN×N ,TH = T,T � 0 and T ∈ T } (2.3)

where T is the set of all Toeplitz matrices. The optimization problem (2.2) is particularly hard to

solve because 1.) the problem in not convex (and no known transformations exist to turn it into one);

hence a global minimizer is virtually impossible to find, 2.) from a numerical standpoint, solutions

are known to be computationally burdensome under the Toeplitz constraint alone [57], [72]. Adding

the rank constraint only exacerbates the problem.

In view of the aforementioned challenges, we focus on covariance matrix estimation that: 1.) is

fast and based on analytical closed forms so as to facilitate practical deployment, and 2.) exploits

previously known insights in radar STAP so that performance in the sense of high SINR and Pd can

be obtained across all training regimes.

Our proposed solution decouples the rank and Toeplitz constraints, and develops a cascade of

two closed forms as the final estimator. The first closed form is obtained by employing the recently

proposed rank constrained ML (RCML) estimator of structured covariance [70]. The final RCML

solution is given by [70]

R? = σ2X?−1 = σ2ΦΛ?−1ΦH (2.4)

where Φ is the eigenvector matrix of the sample covariance matrix S and Λ? is a diagonal matrix
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with optimal diagonal entries λ?i which is given by

λ?i =

 min(1,
1

di
) for i = 1, 2, . . . , r

1 for i = r + 1, r + 2, . . . , N
(2.5)

where di is the ith eigenvalue of the sample covariance matrix normalized by σ2, S′ = 1
σ2 S.

2.3.1 Conditions for Eigenvalues of Toepiltz Covariance

Our approach now involves enforcing the Toeplitz structure on top of the RCML estimator in (2.5).

Let the eigenvector matrix of S be Φ and the eigenvalues of Rc be λ1, λ2, . . . , λr, . . . , λN . Since we

want to preserve the clutter rank constraint rank(Rc) = r, Rc should have only r positive eigenvalues

and the rest of them should be zero, that is

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = λr+2 = · · · = λN = 0 (2.6)

Therefore, Rc can be expressed as

Rc = ΦΛΦH (2.7)

where

Λ =



λ1 0 · · · 0 0 · · · 0

0 λ2 · · · 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 0 λr 0 · · · 0

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0
. . . 0

0 0 · · · 0 0 · · · 0


(2.8)

and

Φ =



φ11 φ12 φ13 · · · φ1N

φ21 φ22 φ23 · · · φ2N

φ31 φ32 φ33 · · · φ3N

...
...

...
. . .

...

φN1 φN2 φN3 · · · φNN


(2.9)

Therefore, we know that ijth component of Rc is given by

(Rc)ij =
r∑

k=1

λkφikφ
∗
jk (2.10)
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Note that Rc is already Hermitian, that is, (Rc)ij = (Rc)
∗
ji. Now in order for Rc to be Toeplitz

matrix, all entries on each diagonal in the lower triangular part in Rc must have same values, i.e., the

following equations must hold.



(Rc)11 = (Rc)22 = · · · = (Rc)NN

(Rc)21 = (Rc)32 = · · · = (Rc)N,N−1

(Rc)31 = (Rc)42 = · · · = (Rc)N,N−2

...

(Rc)N−1,1 = (Rc)N2

(2.11)

Let us examine the first condition in (2.11), (Rc)11 = (Rc)22,

r∑
k=1

λkφ1kφ
∗
1k =

r∑
k=1

λkφ2kφ
∗
2k (2.12)

It can be also expressed as
r∑

k=1

λk(φ1kφ
∗
1k − φ2kφ

∗
2k) = 0 (2.13)

In vector form, the first equation is given by

[
φ11φ

∗
11 − φ21φ

∗
21 · · · φ1rφ

∗
1r − φ2rφ

∗
2r

]
λ1

...

λr

 = 0 (2.14)

Since the elements φij of the eigenvalue matrix Φ are known (Φ is the eigenvector matrix of the

sample covariance matrix), we now have the first constraint for Toeplitz covariance matrix as a linear

combination of the eigenvalues. Other equations in Eqs. (2.11) also can be expressed in a vector form

as in (2.14). Consequentially, we have a total of N(N − 1)/2 equations and finally get the following

equation which is the equality constraint of our optimization problem.

Ψλ = 0 (2.15)

where each row of Ψ ∈ CN(N−1)/2×r denotes coefficients of λi which come from each of equations in

Eqs. (2.11) and λ =
[
λ1 λ2 · · · λr

]T
.

Since Ψ Eq. (2.15) is a tall matrix, (2.15) in general is a overdetermined linear system, that

is, we have more equations than unknowns. The solution set therefore depends on the rank of Ψ.

The first case is that we have an infinite set of solutions when the column rank of Ψ is less than r.

On the other hand, when Ψ has a full column rank, we have the trivial solution, λ = 0. That is,

the covariance matrix can only be made approximately (and not exactly) Toeplitz in this case - this
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remedy is discussed in Section 2.3.3.

2.3.2 Exact Toeplitz Solution

When the column rank of Ψ is less than r, Eq. (2.15) has an infinite number of solutions. In this

case, we can obtain the exact Toeplitz solution. First, let λRCML be the eigenvalues obtained from the

RCML estimation, which is given by Eq. (2.5). We already know the eigenvalues λ from the RCML

estimate are the optimal ML estimate of the true structured covariance matrix under only the rank

constraint. Therefore, we want the eigenvalues of the interference covariance matrix to satisfy Eq.

(2.15) and to be as close to the RCML solution as possible. Since Eq. (2.15) has an infinite number of

solutions, we can find the closest vector of the eigenvalues to λRCML by solving the following convex

optimization problem.

min
λ

||λRCML − λ||2

subject to : Ψλ = 0
(2.16)

The optimization problem (2.16) is a well known quadratic programming (QP) optimization problem

with an equality constraint and therefore the closed form solution is available using KKT condition

[39] and it is given by solving the following equation.

 2I ΨT

Ψ 0

 λ?

ν?

 =

 2λRCML

0

 (2.17)

where ν? is a vector of Lagrange multipliers.

However, the matrix on the left-hand side of Eq. (2.17) is actually singular because Ψ has not full

column rank. So we introduce a new matrix Ψ̌ instead of Ψ to make the left matrix invertible when

we solve it. That is,  2I Ψ̌T

Ψ̌ 0

 λ?

ν?

 =

 2λRCML

0

 (2.18)

where Ψ̌ is a matrix consists of rank(Ψ) linearly independent rows of Ψ. Obviously, Eq. (2.17) and

Eq. (2.18) have the same solution because linearly independent rank(Ψ) rows of Ψ determine the set

of solutions of the equation and removing redundant rows does not make any changes to the solution.

It follows that the final closed form solution using blockwise inversion property is given by

λ? =
(
I− Ψ̌T (Ψ̌Ψ̌T )−1Ψ̌

)
λRCML (2.19)

and the final covariance matrix can be obtained by

R? = σ2I + Φdiag(λ?)ΦH (2.20)
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2.3.3 Toeplitz Approximation

In the case that Ψ has a full column rank, Eq. (2.15) has the only one solution, λ = 0, which

does not yield a meaningful covariance matrix. In this case, the optimization problem to enforce

the Toeplitz structure must be modified. One possibility is to explicitly incorporate the eigenvector

matrix into the optimization. This however, will lead to a computationally expensive problem because

the optimization must constrain the eigenvector matrix to be unitary. Further, using an eigenvector

matrix to agree with Φ, i.e. the one obtained from sample covariance has been known to be very

successful in radar STAP [47, 25, 70].

We therefore take the approach of building an approximately as opposed to exactly Toeplitz matrix.

This can be done by computing the closest rank deficient matrix Ψ̃ to Ψ. Consider the singular value

decomposition of Ψ,

Ψ = UΣVH (2.21)

The well-known theorem, Eckart-Young theorem [73], says that a matrix Ψ̄ with the column rank less

than r that minimizes ||Ψ− Ψ̃||F is given by

Ψ̃ = UΣ̃VH (2.22)

where Σ̃ is the diagonal matrix obtained from Σ by replacing the r-th diagonal element which is the

smallest diagonal element by zero. By substituting Ψ with Ψ̃ in Eq. (2.15), we obtain the infinite

number of solutions for λ. Now, the optimization problem becomes

min
λ

||λRCML − λ||2

subject to : Ψ̃λ = 0
(2.23)

Finally, a Toeplitz matrix is obtained by solving the above optimization problem in the same way

done in the case of exact Toeplitz solution, that is,

λ? =
(
I− Ψ̆T (Ψ̆Ψ̆T )−1Ψ̆

)
λRCML (2.24)

where Ψ̆ is a matrix consists of r − 1 linearly independent rows of Ψ̃.

Remark : It should be noted that the actual rank of Ψ which is derived from Φ depends on the

training data. If the true covariance is indeed Toeplitz, we expect training samples to reflect that

particularly in the regime of K >> N training samples (asymptotic regime), this is indeed what we

observe in practice.
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2.4 Results and Discussions

2.4.1 Experimental Setup and Methods Compared

In this section, we compare the performance of proposed estimator against state of the art Toeplitz

STAP estimators. Two data sets are used: 1.) A radar covariance simulation model and 2.) the well

known KASSPER [8] data set.

First, we model a radar system with an N -element uniform linear array. The overall disturbance

is composed of jammer and white interference. Therefore, the external wideband noise environment

via its input covariance matrix can been modeled by

R(n,m) =
J∑
i=1

σ2
i sinc[0.5βi(n−m)φi]e

j(n−m)φi + σ2
aδ(n,m) (2.25)

where n,m ∈ {1, . . . , N}, J is the number of jammers, σ2
i is the power associated with the ith jammer,

φi is the jammer phase angle with respect to the antenna phase center, βi is the fractional bandwidth,

σ2
a is the actual power level of the white disturbance term, and δ(n,m) has the value of 1 only when

n = m and 0 otherwise. This simulation model has infact been widely and very successfully used in

previous literature [24, 25, 74, 33] for performance analysis. It is easily seen that R is Hermitian and

Toeplitz since R(n,m) depends on only n − m and sinc function is an even function. In addition,

R generally has a rank less than N . Therefore, this model can not only be used to simulate radar

disturbance samples but also makes ground truth covariance available.

Data from the L-band data set of KASSPER program is the other data set used in our experiments.

Note, the KASSPER dataset also makes the true ground truth covariance available and we picked

range bins such that their covariance matrices were exactly or approximately Toeplitz. The L-band

data set consists of a data cube of 1000 range bins corresponding to the returns from a single coherent

processing interval from 11 channels and 32 pulses. Therefore, the dimension of observations (or the

spatio temporal product) N is 11× 32 = 352. Other key parameters are detailed in Table 2.1.

We compare the following six different covariance estimation techniques: A host of competing

techniques like FML, Eigen-canceller, and shrinkage estimators have been compared with the RCML

method in [70]. The results of [70] demonstrate that RCML ouperforms these techniques under all

conditions of training data support and hence they are not reproduced here.

• Sample Covariance Matrix: The sample covariance matrix is given by S =
1

K
ZZH . It

is well known that the sample covariance is the unconstrained maximum likelihood estimator

under Gaussian disturbance statistics. We refer to the use of this technique as SMI.

• Iterated Toeplitz Approximation Method: The iterated Toeplitz approximation method

(ITAM) [72] alternatively estimates a rank deficient matrix using the eigenvalue decomposition

and then make the resulting matrix Toeplitz by substituting diagonal entries with the average
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Table 2.1: KASSPER Dataset-1 parameters
Parameter Value
Carrier Frequency 1240 MHz
Bandwidth (BW) 10 MHz
Number of Antenna Elements 11
Number of Pulses 32
Pulse Repetition Frequency 1984 Hz
1000 Range Bins 35 km to 50 km
91 Azimuth Angles 87◦, 89◦, . . . 267◦

128 Doppler Frequencies -992 Hz, -976.38 Hz, . . ., 992 Hz
Clutter Power 40 dB
Number of Targets 226 ( 200 detectable targets)
Range of Target Dop. Freq. -99.2 Hz to 372 Hz

value of themselves for each diagonal of the estimated matrix. After that, the same process

is repeated until the estimated Toeplitz matrix has a desired rank. The estimated covariance

satisfies both a desired rank and Toeplitz property and it is closer to the true covariance matrix

in the sense of Frobenius norm than the sample covariance matrix.

• Asymptotic Maximum Likelihood: The asymptotic maximum likelihood (AML) [19] ex-

ploits Toeplitz property of the structured covariance matrix. The authors derived a closed-form

formula for Toeplitz covariance matrix estimation and it facilitates computationally efficient

implementation. However, they assumed a large number of training samples and their closed-

form solution is asymptotically valid. That is, in the low/realistic training regime, estimation

performance invariably suffers.

• Rank Constrained ML estimator: The RCML estimator [70] has been recently proposed

and exploits the clutter rank information of the structured covariance matrix but not Toeplitz

property. It is also the first step of the closed form solution of our proposed method.

• Sequential Quadratic Programming: Al-Homidan proposed a sequential quadratic pro-

gramming (SQP) algorithm to find the nearest symmetric positive semi-definite Toeplitz matrix

to given a matrix [59]. There are many other Toeplitz approximation algorithms in applied

mathematics [60, 61, 62]. We choose the SQP algorithm largely because it guarantees a global

minima in approximation error and the l1 SQP method is considerably faster [59] than alterna-

tives. In practice, the estimator is developed by making a Toeplitz approximation to the RCML

estimator. This makes the technique analogous to our proposal of decoupling the rank and

Toeplitz constraints in Section 2.3. However, using applied math approximations in a ‘black-

box’ manner has two major drawbacks: 1.) the approximation may not necessarily preserve

rank and radar STAP specific structure (e.g. eigenvector matrix is perturbed as well), and 2.)

the techniques are numerically involved particularly with an increase in data dimension.
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Figure 2.1: Trace deviation measure vs. the number of independent snapshots for (a) simulation
model and (b) KASSPER data set.

• EASTR: The proposed Efficient Approximation of Structured covariance under joint Toeplitz

and Rank (EASTR) constraints. It incorporates Toeplitz structure, the rank of the clutter

component as well as the STAP structural constraint.

In the results to follow, the ITAM, RCML, SQP and EASTR exploit rank information. The

clutter rank for the simulation model covariance is of course known and for the KASSPER data set

was inferred via the Brennan rule.

2.4.2 Whiteness Test

Before using popular radar STAP measures, we apply a ‘whiteness test’. The trace deviation measure

[56] is one way of evaluating covariance matrix estimators since it captures the extent to which the

estimated covariance matrix whitens the true covariance matrix. It is given by

TRD(R̂) = |tr{R−1R̂}/N − 1| (2.26)

Intuitively, we can see that its lower bound is zero when R̂ = R and smaller value of TRD means

better performance.

Fig. 2.1 shows bargraphs of the performance of compared methods for simulation model and

KASSPER data set respectively. Fig. 2.1a shows bargraphs of the performance in terms of TRD

measure versus the number of training samples. Because the SMI and the AML show very high TRD

values, we do not plot them in Fig. 2.1a. Fig. 2.1b similarly shows the result of TRD measure across

three training regimes for the KASSPER data set. The TRD measure results in Figs. 2.1a and 2.1b
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Figure 2.2: Normalized SINR versus the number of independent snapshots for simulation model.
N = 20

reveal hence that EASTR is infact “structurally” the closest to the true covariance matrix.

2.4.3 Normalized SINR

The normalized SINR measure [44] is commonly used in the radar literature and is given by

ηi =
|sHR̂−1

i s|2

|sHR̂−1
i RR̂−1

i s||sHR−1s|
(2.27)

where s is the spatio-temporal steering vector, R̂i is the data-dependent estimate of R at the i-th

trial, and R is the true covariance matrix. It is easily seen that 0 < η < 1 and η = 1 if and only if

R̂ = R. The SINR is plotted in dB, that is, SINRi(dB) = 10 log10 ηi. Therefore, SINRi(dB) ≤ 0.

We plot the normalized average SINR versus the number of training samples K in Fig. 2.2. In this

case, we consider the presense of wideband jamming J = 3. In particular, the fractional bandwidth

βi = [0.2, 0, 0.3], the powers and phases of jammers are 10 dB, 20 dB, 30 dB and 20 deg, 40 deg,

and 60 deg, respectively. When K < N the sample covariance is singular, therefore we used its

pseudo-inverse instead of inverse itself.1 Interpreting the results in Fig. 2.2, it is useful to start with

AML which does particularly well when training is generous K >> N . However, because AML is

asymptotically based - its performance is poor when K < N or K ≈ N (K in the vicinity of N is

often considered realistic training). Even, the SMI and SQP estimators are better than AML when

training is low/realistic. ITAM is effective in very low training as expected because its exploits both

rank and Toeplitz constraints (though in a largely heuristic way) - ITAM does not exhibit scalable

improvements as training support is increased. EASTR performs the best overall, even better than

RCML (which was recently demonstrated to be the most competitive radar STAP estimator [70]) by

1Note also that SMI and AML have a dip when K = 20 due to numerical instabilities in the K = N training regime.
In contrast, ITAM, RCML, EASTR, and SQP guarantee nonsingularity in all training regimes.
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Figure 2.3: Normalized SINR versus azimuthal angle for KASSPER data set. (a) and (b) for K(=
250) < N , (c) and (d) for K = N = 352, and (e) and (f) for K(= 450) > N
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Figure 2.4: Normalized SINR versus Doppler frequency for KASSPER data set. (a) and (b) for
K(= 250) < N , (c) and (d) for K = N = 352, and (e) and (f) for K(= 450) > N
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Figure 2.5: Probability of detection vs. SNR for simulation model via normalized matched filter
(NMF) test. (a) K = N = 20 and (b) K = 2N = 40.

virtue of additionally capturing the Toepltiz structure on covariance.

Fig. 2.3 and Fig. 2.4 similarly plots the normalized SINR result for KASSPER data set as a

function of the azimuthal angle and Doppler frequency for three different training regimes. Specifically,

the first rows of Fig. 2.3 and Fig. 2.4 are corresponding to K = 250(< N), the second rows are

corresponding to K = N = 352, and finally the third rows are corresponding to K > N = 450

training samples. Plots in the right column show zommed in versions of ITAM, EASTR, and RCML.

The sample covariance technique and the AML suffer tremendously when K ≤ N . For low training,

ITAM shows comparable performance to the EASTR and the RCML estimators in some ranges of the

azimuthal angle but is worse in some other ranges. On an average (over azimuthal angle and Doppler

frequency), EASTR is easily the best in Fig. 2.3 and Fig. 2.4, even providing appreciably gains over

the second best RCML estimator. Further, EASTR is stable and effective across all training regimes

K < N,K ≈ N and K > N .

2.4.4 Probability of Detection vs. SNR

In order to compute probability of detection, Pd, we apply the normalized matched filter (NMF) [75]

as the test statistic
|sHR−1x|2

[sHR−1s][xHR−1x]

H1

≷
H0

λNMF (2.28)

where x and K are the observation vector and the number of training samples, respectively. The

detection probability Pd is defined as the probability that the value of test statistic is grater than a

threshold conditioned on the hypothesis that the received data includes target information. Therefore,

it depends on signal to noise ratio (SNR, by virtue of s,) and the estimated covariance matrix. Since Pd
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Figure 2.6: Probability of detection vs. SNR for KASSPER data set via normalized matched filter
(NMF) test. (a) K = N = 352 and K = 2N = 704.

does not typically admit a closed form, we first generate a number of samples from the true covariance

to determine λ corresponding to the fixed false alarm rate and then employ Monte Carlo simulations

to evaluate Pd corresponding to each estimator. We set a constant false alarm rate to 10−4.

Fig. 2.5 shows the detection probability Pd for simulation model plotted as a function of SNR

for different estimators. We use K = N = 20 and K = 2N = 40 training samples to estimate the

covariance matrix in Fig. 2.5a and Fig. 2.5b, respectively. It is well-known that K = 2N training

samples are needed to keep the performance within 3 dB. Indeed, we see that the sample covariance

matrix has about 3 dB loss vs. the true covariance matrix in Fig. 2.5b. The proposed EASTR is the

closest to the Pd achieved by using the true covariance matrix (upper bound) for both cases. In Fig.

2.5a, we do not plot for ITAM and SQP because they do not guarantee positive semi-definiteness of

final estimate in the case of K = N = 20, so we cannot calculate the detection probabilities for them.

Fig. 2.6 also shows the probability of detection versus SNR plots. We use the same training

regimes as used in Section 2.4.3. Fig. 2.6a and Fig. 2.6b plot results for K = 352 and K = 2N = 704,

respectively. We can see similar trends in Fig. 2.6 hence for KASSPER data to the ones for the

simulation model in Fig. 2.5. EASTR exhibits the best performance in both plots.

2.5 Conclusions

Our work focuses on jointly exploiting a Toeplitz structure as well as a rank constraint on the clutter

covariance for radar STAP. The problem is inherently hard because it is well known that there is

no closed form solution for ML estimation under Toeplitz constraint for all training regimes. While

past work has provided iterative often expensive solutions, we develop a new estimator that is based
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on a cascade of two closed forms. The first closed form is the recently proposed RCML estimator.

Our core contribution, the second step of Toeplitz approximation performs constrained optimization

of eigenvalues to either exactly or approximately satisfy the Toeplitz constraint without compromis-

ing the rank. Crucially, this optimization also has a closed form making the overall estimator very

friendly from a computational standpoint. Via performance analysis evaluating probability of detec-

tion, normalized SINR, and trace deviation measure, our estimator is shown to outperform traditional

efforts in Toeplitz and low rank covariance estimation including those based on expensive numerical

solutions. Recently, the optimality of the fast maximum likelihood [24] covariance estimator has been

proven with respect to cost functions involving the Frobenius or the spectral norm [76]. EASTR can

also be investigated for similar notions of optimality. In addition, more analysis of our estimator such

as asymptotic convergence can be performed. Finally, practical evaluation may be performed on other

radar data sets involving departures from idealized scenarios.
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Chapter 3

Robust Covariance Estimation

under Imperfect Constraints using

Expected Likelihood Approach

3.1 Introduction

Radar systems using multiple antenna elements and processing multiple pulses are widely used in

modern radar signal processing since it helps overcome the directivity and resolution limits of a single

sensor. Joint adaptive processing in the spatial and temporal domains for the radar systems, called

space time adaptive processing (STAP) [47, 48, 44], enables to suppress interfering signals as well as

to preserve gain on the desired signal. Interference statistics, in particular the covariance matrix of

the disturbance, which must be estimated from secondary training samples in practice plays a critical

role on success of STAP. To obtain a reliable estimate of the disturbance covariance matrix, a large

number of homogeneous training samples are necessary. This gives rise to a compelling challenge for

radar STAP because such generous homogeneous (target free) training is generally not available in

practice [7].

Much recent research for radar STAP has been developed to overcome this practical limitation

of generous homogeneous training. Specifically, the knowledge-based processing which uses a priori

information about the interference environment is widely referred in the literature [29, 40] and has

merit in the regime of limited training data. These techniques include intelligent training selection

[29] and the spatio-temporal degrees of freedom reduction [40, 12, 6]. In addition, covariance matrix

estimation techniques the enforce and exploit a particular structure have been pursed as one approach

of these techniques. Examples of structure include persymmetry [17], Toeplitz structure [19, 18, 20],

circulant structure [21], and eigenstructure [24, 70, 25]. In particular, the fast maximum likelihood
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(FML) method [24] which enforces a special eigenstructure that the disturbance covariance matrix

represents a scaled identity matrix plus a rank deficient and positive semidefinite clutter component

also falls in this category and is shown to be the most competitive technique experimentally.

Recently, the works by Kang et al. [70] and Aubry et al. [25] have also improved upon the FML by

exploiting practical constraints inspired by physical radar environment, specifically the eigenstructure

of the disturbance covariance matrix for radar STAP. They employed a rank of the clutter subspace

and a condition number of the interference covariance matrix respectively as a constraint as well as

the structural constraint used in the FML into the optimization problem. For both methods, though

the initial optimization problems are non-convex, the estimation problems are reduced to a convex

optimization problems and admit closed-form solutions. Their methods have also been shown to

enable higher normalized SINR over the state-of-the art alternatives for the simulation model and the

knowledge-aided sensor signal processing and expert reasoning (KASSPER) data set.

In [70], the authors assume the rank of the clutter is given by Brennan rule [1] under ideal conditions

of no coupling. However, in practice (under non-ideal conditions) the clutter rank departs from the

Brennan rule prediction due to antenna errors and internal clutter motion. In this case, the rank is not

known precisely and needs to be determined before using with the RCML estimator. Determination

of the number of signals in a measurement record is a classical eigenvalue problem, which has received

considerable attention in the past 60 years. It is important to note that the problem does not have

a simple and unique solution. Consequently, a number of techniques have been developed to address

this problem [77, 78, 79, 80, 81]. In addition, the noise level and the condition number should be

estimated as well if they are unknown or non precisely known in practice.

Expected likelihood (EL) approach [82] has been proposed to determine a regularization parameter

based on the statistical invariance property of the likelihood ratio (LR) values. More specifically, the

probability distribution function (pdf) of LR values for the true covariance matrix depends on only

the number of training samples (K) and the dimension of the true covariance matrix (N), not the

true covariance itself under a Gaussian assumption on the observations. This statistical independence

of LR values on the true covariance itself enables pre-calculation of LR values even though the true

covariance is unknown. Finally, the regularization parameters are selected so that the LR value of the

estimate agrees as closely as possible with the median LR value determined via its pre-characterized

pdf.

Contributions: In view of the aforementioned observations, we develop covariance estimation

methods which automatically and adaptively determines the values of practical constraints via an

expected likelihood approach for practical radar STAP. Our main contributions are:

• A method of choice of constraints using the EL approach: We propose a method of a

choice of practical constraints employed in the optimization problems for covariance estimation in

radar STAP using the expected likelihood approach. The proposed method guides the selection
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of the constraints via the expected likelihood criteria in the case that the knowledge of the

constraints is imperfectly known in practice. We consider three different cases of the constraints

in this chapter: 1) only the clutter rank constraint, 2) both the clutter rank and the noise power

constraints, and 3) the condition number constraint.

• Analytical results with formal proofs for three different cases of imperfect con-

straints: For each case mentioned above, we develop significant analytical results. We first

formally prove that the rank selection problem based on the expected likelihood approach has a

unique solution. This guarantees there is only one rank which is the best (global optimal) rank

in the sense of the EL approach. Second, we derive a closed form solution of the optimal noise

power in the sense of the EL approach for a given rank. This means we do not need iterative or

numerical method to find the optimal noise power and enables fast implementation. Finally, we

also prove there exists the unique condition number for the condition number selection method

via the EL approach.

• Experimental Results through simulated model and the KASSPER data set: Ex-

perimental investigation on a simulation model and on the KASSPER data set shows that the

proposed methods for three different cases outperform alternatives such as the FML, leading

rank selection methods in radar literature and statistics, and the ML estimation of the condi-

tion number constraint in the sense of normalized SINR.

The rest of the chapter is organized as follows. We provide the proposed methods of the constraint

selection problems via the EL approach in Section 3.2. Experimental validation of our method is

provided in Section 3.3 wherein we report the performance of the proposed method and compare

it against existing methods in terms of normalized SINR on both the simulation model and the

KASSPER data set.

3.2 Constraints selection method via Expected Likelihood Ap-

proach

3.2.1 Imperfect rank constraint

In Chapter 1, we discuss that the RCML estimator is not only powerful in practice but also compu-

tationally cheap and the EL approach is shown to be useful to select parameters so that the estimate

is consistent with the true covariance matrix in the sense of the LR value. From Eq. (2.5), we see

the RCML solution is a function of the rank r and di’s which are given in the problem. We propose

to use the EL approach to refine and find the optimal rank when the rank determined by underlying

physics is not necessarily accurate.
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Figure 3.1:

(
log
(

LR
(
RRCML(r),Z

)
/LR0

))2

versus r for KASSPER dataset (K = 2N = 704)

Now we set up the optimization criterion to find the rank via the EL approach. We find a rank

which makes its corresponding LR value closer to LR0 than any other ranks. That is,

R̂RCMLEL
= σ2VΛ?−1(r̂)VH (3.1)

where

r̂ ≡ arg min
r∈Z

∣∣∣LR
(
RRCML(r),Z

)
− LR0

∣∣∣2 (3.2)

and LR
(
RRCML(r),Z

)
is given by Eq. (3.3).

Now we investigate the optimization problem (3.2) for the rank selection. Since the eigenvectors of

RRCML are identical to those of the sample covariance matrix S, the LR value of RRCML in Eq. (3.2)

can be reduced to the function of the eigenvalues of RRCML and S. Let the eigenvalues of RRCML

and S be λi and di (arranged in descending order). Then the LR value of RRCML can be simplified

to a function of ratio of di to λi,
di
λi

. That is,

LR
(
RRCML(r),Z

)
=

|R̂−1
RCML(r)S| expN

exp
(

tr
[
R̂−1

RCML(r)S
]) (3.3)

=

N∏
i=1

di
λi
· expN

exp
[ N∑
i=1

di
λi

] (3.4)

Lemma 1. The LR value of the RCML estimator, LR
(
RRCML(r),Z

)
, is a monotonically increasing

function with respect to the rank r and there is only one unique r̂ in the optimization problem (3.2).

Proof. First, let r be the largest i such that di+1 ≥ σ2. Then, from the closed form solution of the

RCML estimator, the eigenvalues of the RCML estimator with rank i and i+ 1 for given i < r will be

• R̂RCML(i) : d1, d2, . . . , di, σ2, . . . , σ2
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• R̂RCML(i+ 1) : d1, d2, . . . , di, di+1, σ2, . . . , σ2

since di+1 ≥ σ2. Then
di
λi

should be

• R̂RCML(i) : 1, 1, . . . , 1i,
di+1

σ2
, . . . ,

dN
σ2

• R̂RCML(i+ 1) : 1, 1, . . . , 1i, 1i+1,
di+2

σ2
, . . . ,

dN
σ2

From Eq. (3.4), the LR values of the RCML estimators with the ranks i and i+ 1 are

LR(i) =

expN

σ2(N−i)

N∏
k=i+1

dk

exp(i+
1

σ2

N∑
k=i+1

dk)

(3.5)

LR(i+ 1) =

expN

σ2(N−i−1)

N∏
k=i+2

dk

exp(i+ 1 +
1

σ2

N∑
k=i+2

dk)

(3.6)

From Eq. (3.5) and Eq. (3.6), we obtain

LR(i+ 1) =

expN

σ2(N−i−1)

N∏
k=i+2

dk

exp(i+ 1 +
1

σ2

N∑
k=i+2

dk)

(3.7)

=

expN

σ2(N−i)

N∏
k=i+1

dk ·
σ2

di+1

exp(i+
1

σ2

N∑
k=i+1

dk) exp(1− di+1

σ2
)

(3.8)

= LR(i) · σ
2

di+1
· exp(

di+1

σ2
− 1) (3.9)

Eq. (3.9) tells us LR(i+1) can be calculated by multiplying LR(i) by the coefficient
σ2

di+1
·exp(

di+1

σ2
−1).

Fig. 3.2 shows that
σ2

di+1
· exp(

di+1

σ2
− 1) ≥ 1 (3.10)

for all values of
σ2

di+1
. Therefore, it is obvious that

LR(i+ 1) ≥ LR(i), (3.11)

which means the LR value monotonically increases with respect to i.
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Now, let’s consider the other case, i ≥ r. In this case, since di+1 < σ2, it is easily shown that

RRCML(i) = RRCML(i+ 1) (3.12)

Therefore,

LR(i+ 1) = LR(i) (3.13)

This proves that LR(i) monotonically increases for all 1 ≤ i ≤ N .

Lemma 1 gives us a significant analytical result that is the EL approach leads to a unique value

of the rank, i.e., when searching over the various values of the rank it is impossible to come up with

multiple choices. That also means that it is guaranteed that we can always find the global optimum

of r not local optima (minima) for the optimization problem (3.2) regardless of an initial value of r.

We plot the values of

(
log
(

LR
(
RRCML(r),Z

)
/LR0

))2

versus the rank r for one realization for the

KASSPER dataset (K = 2N = 704) in Fig. 3.1. Since the LR values are too small in this case, we

use a log scale and the ratio between two instead of the distance to see the variation clearly. Note

that monotonic increase of the value of LR
(
RRCML(r),Z

)
w.r.t r guarantees a unique optimal rank

even if the optimization function as defined in (3.2) is not necessarily convex in r.

The algorithm to find the optimal rank is simple and not computationally expensive due to the

analytical results above. For a given initial rank such as Brennan rule for the KASSPER data set and

the number of jammers for a simulation model, we first determine a direction of searching and then

find the optimal rank. The procedure of finding the optimal rank is shown in Algorithm 1 in detail.
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Algorithm 1 The proposed algorithm to select the rank via EL

1: Initialize the rank r by physical environment such as Brennan rule.
2: Evaluate LR(r− 1), LR(r), LR(r+ 1)), the LR values of RCML estimators for the ranks r− 1, r,
r + 1, respectively.

• if |LR(r + 1)− LR0 | < |LR(r)− LR0 |
→ increase r by 1 until |LR(r)− LR0 | is minimized to find r̂.

• elseif |LR(r − 1)− LR0 | < |LR(r)− LR0 |
→ decrease r by 1 until |LR(r)− LR0 | is minimized to find r̂.

• else r̂ = r, the initial rank.

3.2.2 Imperfect rank and noise power constraints

In this section, we investigate the second case that both the rank r and the noise power σ2 are not

perfectly known. We propose the estimation of both the rank and the noise level based on the EL

approach. The estimator with both the rank and the noise power obtained by the EL approach is

given by

R̂RCMLEL
= σ̂2VΛ?−1(r̂)VH (3.14)

where

(r̂, σ̂2) ≡ arg min
r∈Z,σ2>0

∣∣∣LR
(
RRCML(r, σ2),Z

)
− LR0

∣∣∣2 (3.15)

In section 3.2.1, we have shown that the optimal rank via the EL approach is uniquely obtained

for a fixed σ2. Now we analyze the LR values of the RCML estimator for various σ2 and a fixed rank.

Lemma 2. For a fixed rank, the LR value of the RCML estimator, which is a function of σ2, has a

maximum value at σ2 = σ2
ML. It monotonically increases for σ2 < σ2

ML and monotonically decreases

for σ2 > σ2
ML.

Proof. In this section, I investigate the LR values for varying noise level σ2 and a given rank r. From

Eq. (3.5) we obtain the LR value when the rank is r,

LR(σ2) =

expN

σ2(N−r)

N∏
k=r+1

dk

exp(r +
1

σ2

N∑
k=r+1

dk)

(3.16)

For simplicity, let σ2 = t then Eq. (3.16) can be simplified as

LR(t) =

eN−r
N∏

k=r+1

dk

tN−re

∑N
k=r+1 dk

t

(3.17)
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Now let
N∑

k=r+1

dk = ds and
N∏

k=r+1

dk = dp, then

LR(t) =
eN−rdp

tN−re
ds
t

(3.18)

= dpe
N−rtr−Ne−

ds
t (3.19)

To analyze increasing or decreasing property Eq. (3.19), I calculate its first derivative. Since dpe
N−r

is a positive constant, it does not affect increasing or decreasing of the function. Therefore,

(tr−Ne−
ds
t )′

= (r −N)tr−N−1e−ds/t + tr−Ne−ds/t
ds
t2

(3.20)

= (r −N)tr−N−1e−ds/t + tr−N−2e−ds/tds (3.21)

= tr−N−2
(
(r −N)t+ ds

)
e−ds/t (3.22)

Since tr−N−2 and e−ds/t are always positive, the first derivative (tr−Ne−
ds
t )′ = 0 if and only if

t =
ds

N − r
=

∑N
k=r+1 dk

N − r
(3.23)

and it is positive when t <

∑N
k=r+1 dk

N − r
and negative otherwise. This means that LR(σ2) increases

for σ2 <

∑N
k=r+1 dk

N − r
and decreases for σ2 >

∑N
k=r+1 dk

N − r
. The LR value is maximized when σ2 =∑N

k=r+1 dk

N − r
. Note that

∑N
k=r+1 dk

N − r
is the average value of N − r smallest eigenvalues of the sample

covariance matrix and in fact a maximum likelihood solution of σ2 as shown in the RCML estimator

[70].

Fig. 3.3 shows an example of the LR values as a function of the noise level σ2. As shown in Lemma

2, we see that the LR value is maximized for the ML solution of σ2 and monotonically increases and

decreases for each direction. It is obvious that we have three cases of the solution of the optimal noise

power from Lemma 2: 1) no solution, 2) only one solution, and 3) two optimal solution. Now we

discuss how to obtain the optimal noise power for a fixed rank.

Lemma 3. The noise power obtained by the expected likelihood approach, σ̂2
EL, is given by

σ̂2
EL = exp

(
Wk

(
b

a
e−

c
a

)
+
c

a

)
(3.24)
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where Wk(z) is the k-th branch of Lambert W function and


a = r −N

b =
∑N
k=r+1 dk

c = log LR0− log
(∏N

k=r+1 dk

)
+ a

(3.25)

Proof. For a given rank r, the optimal solution of the noise power via the EL approach, t̂(= σ̂2
EL), is

the solution of LR(t) = LR0. From Eq. (3.19), that is, t̂ is the solution of the equation given by

dpe
N−rtr−Ne−

ds
t = LR0 (3.26)

Taking log on both side leads

log dp +N − r + (r −N) log t− ds
t

= log LR0 (3.27)

For simplification, we take substitutions of variables,
a = r −N

b =
∑N
k=r+1 dk

c = log LR0− log
(∏N

k=r+1 dk

)
+ a

(3.28)

Then, Eq. (3.27) is simplified to an equation of t,

a log t− b

t
= c (3.29)

Again, let u = log t. Then, since t = eu, we obtain

au− be−u = c (3.30)

e−u =
a

b
u− c

b
(3.31)

Now let s = u− c
a . Then, the equation is

e−s−
c
a =

a

b
s (3.32)

ses =
b

a
e−

c
a (3.33)

The solution of Eq. (3.33) is known to be obtained using Lambert W function [83]. That is,

s = W

(
b

a
e−

c
a

)
(3.34)
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Figure 3.3: The LR value versus σ2 for the simulation model, N = 20, K = 40, r = 5

where W (·) is a Lambert W function which is defined to be the function satisfying

W (z)eW (z) = z (3.35)

Finally, we obtain

u = W

(
b

a
e−

c
a

)
+
c

a
(3.36)

and

σ̂2
EL = t̂ = exp

(
W

(
b

a
e−

c
a

)
+
c

a

)
(3.37)

Lemma 3 shows that there is a closed form solution of the optimal noise power for a fixed rank.

Therefore we do not need any iterative and numerical algorithms to obtain both the optimal rank and

noise power.

Now we propose the method to alternately find the optimal solution of both the rank and the

noise power. For a fixed σ2, we can obtain the optimal rank via Algorithm 1. For a fixed rank, we

should consider three cases described above. The first case implies that the LR value corresponding

σ2
ML is less than LR0 and therefore, we increase the rank until the solution of σ2 exists. In the second

case, we can easily determine σ̂2 = σ2
ML. For the third case that there are two solutions of σ2, we

have to choose one among two EL solutions and the ML solution. We experimentally observe that the

threshold in the test statistics such as the normalized matched filter is typically smaller for the better

estimator in the sense of the normalized SINR and the probability of detection from our experiments.

Therefore, we choose one of σ2
ML, σ2

EL1, σ2
EL2, which generates the smallest value of the test statistics.

The detail procedure of the algorithm is described in Algorithm 2.
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Algorithm 2 The proposed algorithm to select the rank and the noise level via EL

1: Initialize the rank r by physical environment such as Brennan rule or the number of jammers.
2: If there is no solution of σ2 for given r, increase r until the solution of σ2 exists.
3: Obtain σ2

ML = 1
N−r

∑N
i=r+1 di.

4: For given σ2
ML, find a new r using Algorithm 1.

5: Repeat Step 3 and Step 4 until the rank r converges.
6: After r is determined, choose σ̂2 among σ2

ML, σ2
EL1, σ2

EL2.

3.2.3 Imperfect condition number constraint

Now we discuss the proposed method to determine the condition number constraint through the

EL approach in this section. The condition number constrained ML estimator is a function of the

condition number Kmax. Therefore, the final estimate is also a function of Kmax. Similar to what

we have done in previous sections, we find an optimal condition number so that the LR value of the

estimated covariance matrix should be same as a statistical median value of the LR value of the true

covariance matrix, that is

R̂CNCMLEL
= σ̂2VΛ?−1(K̂max)VH (3.38)

where

K̂max ≡ arg min
Kmax≥1

∣∣∣LR
(
RCNCML(Kmax),Z

)
− LR0

∣∣∣2 (3.39)

Before we discuss the algorithm to find the optimal condition number, we analyze the closed form

solution for the condition number constrained ML estimation which is proposed in [25]. We derive a

more explicit closed form solution.

Lemma 4. The more simplified closed form solution of the condition number constrained ML esti-

mator is given by

1. d1 ≤ σ2,

R̂CN = σ2I (3.40)

2. σ2 ≤ d1 ≤ σ2Kmax,

R̂CN = R̂FML (3.41)

3. d1 > σ2Kmax and Kmax ≥
∑c
i=1 di

c−
∑N
N̄+1

(di−1)
,

R̂CN = Φ diag(λ∗)ΦH (3.42)

where

λ? =
[
σ2Kmax, . . . , σ

2Kmax, dc+1, . . . , dN̄ , σ
2, . . . , σ2

]
, (3.43)

c and N̄ are the vector of the eigenvalues of the estimate, the largest indices so that dc > σ2Kmax,

and dN̄ ≥ σ2
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4. d1 > σ2Kmax and Kmax <
∑c
i=1 di

c−
∑N
N̄+1

(di−1)
,

λ? =
[σ2

u
, . . . ,

σ2

u
, dp+1, . . . , dq,

σ2

uKmax
, . . . ,

σ2

uKmax

]
(3.44)

And the condition numbers of the estimates are 1, d1

σ2 , Kmax, and Kmax, respectively.

Proof. We consider 5 cases provided in [25].

1. d1 ≤ σ2 ≤ σ2 Kmax

Since u? = 1
Kmax

,

λ?i = min(min(Kmax u
?, 1),max(u?,

1

d̄i
)) (3.45)

= min(min(1, 1),max(
1

Kmax
,

1

d̄i
)) (3.46)

= min(1,
1

d̄i
) = 1 (3.47)

Therefore,

R̂CN = σ2I (3.48)

and the condition number is 1.

2. σ2 < d1 ≤ Kmax

Since u? = 1
d̄1

,

λ?i = min(min(Kmax u
?, 1),max(u?,

1

d̄i
)) (3.49)

= min(min(
Kmax

d̄1
, 1),max(

1

d̄1
,

1

d̄i
)) (3.50)

= min(1,
1

d̄i
) (3.51)

=

 1
d̄i

d̄i ≥ 1

1 d̄i < 1
(3.52)

Therefore,

R̂CN = R̂FML (3.53)

and the condition number is d1

σ2 .

3. d1 > σ2 Kmax and u? = 1
d̄1

dG(u)
du |u= 1

d̄1

must be zero if u? = 1
d̄1

. The first derivative of Gi(u) is given by

G′i(u) =

 − 1
u + Kmax d̄i if 0 < u ≤ 1

Kmax

0 if 1
Kmax

≤ u ≤ 1
(3.54)
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for d̄i ≤ 1, and

G′i(u) =


− 1
u + Kmax d̄i if 0 < u ≤ 1

Kmax d̄i

0 if 1
Kmax d̄i

< u ≤ 1
d̄i

− 1
u + d̄i if 1

d̄i
≤ u ≤ 1

(3.55)

for d̄i > 1. Therefore,

dG(u)

du
|u= 1

d̄1

=
N∑

i=N̄+1

(Kmax d̄i − d̄1) +
N̄∑
i=p

(Kmax d̄i − d̄1) (3.56)

where p is the greatest index such that 1
d̄1
< 1

Kmax d̄p
. For i = N̄ , . . . , N , since d̄i ≤ 1,

Kmax d̄i − d̄1 < Kmax−d̄1 < 0 (3.57)

and for i = p, . . . , N̄ − 1, since d̄1 > Kmax d̄i, Kmax d̄i − d̄1 < 0. Therefore, in this case, it is

obvious that
dG(u)

du
|u= 1

d̄1

< 0 (3.58)

4. d1 > σ2 Kmax and u? = 1
Kmax

Aubry et al. [25] showed that u? = 1
Kmax

if dG(u)
du |u= 1

Kmax
≤ 0. From Eq. (3.54) and Eq. (3.55),

dG(u)

du
|u= 1

Kmax
=

N∑
i=N̄+1

Kmax(d̄i − 1) +

p∑
i=1

(d̄i −Kmax) (3.59)

where p is the greatest index such that d̄p > Kmax. Therefore,

dG(u)
du |u= 1

Kmax
≤ 0 (3.60)

⇔
N∑

i=N̄+1

Kmax(d̄i − 1) +

p∑
i=1

(d̄i −Kmax) ≤ 0 (3.61)

⇔ Kmax(
∑N
i=N̄+1(d̄i − 1)− p) +

∑p
i=1 d̄i ≤ 0 (3.62)

⇔ Kmax(
∑N
i=N̄+1(d̄i − 1)− p) ≤ −

∑p
i=1 d̄i (3.63)

⇔ Kmax ≥
∑p
i=1 d̄i

p−
∑N
i=N̄+1

(d̄i−1)
(3.64)
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In this case,

λ?i = min(min(Kmax u
?, 1),max(u?,

1

d̄i
)) (3.65)

= min(min(1, 1),max(
1

Kmax
,

1

d̄i
)) (3.66)

= min(1,max(
1

Kmax
,

1

d̄i
)) (3.67)

=

 min(1, 1
Kmax

) d̄i ≥ Kmax

min(1, 1
d̄i

) d̄i < Kmax

(3.68)

=


1

Kmax
d̄i ≥ Kmax

1
d̄i

1̄ ≤ d̄i < Kmax

1 d̄i < 1

(3.69)

Finally we obtain

λ? =
[
σ2Kmax, . . . , σ

2Kmax, dp+1, . . . , dN̄ , σ
2, . . . , σ2

]
, (3.70)

where p and N̄ are the largest indices so that dp > σ2Kmax and dN̄ ≥ σ2, respectively.

5. d1 > σ2Kmax and Kmax <
∑p
i=1 d̄i

p−
∑N
i=N̄+1

(d̄i−1)

In this case, since 1
d̄1
< u? < 1

Kmax
,

λ?i = min(min(Kmax u
?, 1),max(u?,

1

d̄i
)) (3.71)

= min(Kmax u
?,max(u?,

1

d̄i
)) (3.72)

=

 min(Kmax u
?, u?) d̄i ≥ 1

u?

min(Kmax u
?, 1
d̄i

) d̄i <
1
u?

(3.73)

=


u? d̄i ≥ 1

u?

1
d̄i

1
Kmax u?

≤ d̄i ≤ 1
u?

Kmax u
? d̄i <

1
Kmax u?

(3.74)

Therefore, we obtain

λ? =
[σ2

u?
, . . . ,

σ2

u?
, dp+1, . . . , dq,

σ2

u?Kmax
, . . . ,

σ2

u?Kmax

]
(3.75)

where p and q are the largest indices so that dp >
σ2

u and dq >
σ2

uKmax
, respectively.

From Lemma 4, for the first two cases that is d1 ≤ σ2Kmax, the estimator is either a scaled identity
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matrix or the FML. Therefore, there is no need to find an optimal condition number in these cases

since the estimator is not a function of the condition number.

Now we investigate uniqueness of the optimal condition number as we have done in the case of

only rank constraint for the last two cases where the optimal eigenvalues are functions of the condition

number.

Lemma 5. The LR value of the condition number ML estimator is a monotonically increasing function

with respect to the condition number Kmax and there is only one unique KmaxEL
.

Proof. 1. d1 ≤ σ2

R̂CN = σ2I (3.76)

In this case, R̂CN does not change, so LR(Kmax) is a constant.

2. σ2 ≤ d1 ≤ σ2Kmax

R̂CN = R̂FML (3.77)

In this case, R̂CN does not change, so LR(Kmax) is a constant.

3. d1 > σ2Kmax and Kmax ≥
∑p
i=1 di

c−
∑N
N̄+1

(di−1)

R̂CN = Φ diag(λ∗)ΦH (3.78)

where

λ? =
[
σ2Kmax, . . . , σ

2Kmax, dp+1, . . . , dN̄ , σ
2, . . . , σ2

]
, (3.79)

p and N̄ are the largest indices so that dp > σ2Kmax and dN̄ ≥ σ2, respectively.

LR(Kmax)

=

∏N
i=1

di
λi
eN

exp(
∑N
i=1

di
λi

)

=

p∏
i=1

di
σ2 Kmax

·
N̄∏

i=p+1

1 ·
N∏

i=N̄+1

di
σ2
· eN

exp(

p∑
i=1

di
σ2 Kmax

+
N̄∑

i=p+1

1 +
N∑

i=N̄+1

di
σ2

)

=

∏p
i=1

di
σ2 Kmax

·
∏N
i=N̄+1

di
σ2 · eN

exp(

p∑
i=1

di
σ2 Kmax

) · eN̄−p · exp(
N∑

i=N̄+1

di
σ2

)
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(a) within the range where p remains same

LR(Kmax)

=

∏p
i=1

di
σ2 Kmax

·
∏N
i=N̄+1

di
σ2 · eN

exp(

p∑
i=1

di
σ2 Kmax

) · eN̄−p · exp(
N∑

i=N̄+1

di
σ2

)

= c1

∏p
i=1

di
σ2 Kmax

exp(
∑p
i=1

di
σ2 Kmax

)

= c1

1
(σ2 Kmax)p

∏p
i=1 di

exp( 1
σ2 Kmax

∑p
i=1 di)

= c1

1
(σ2 Kmax)p

∏p
i=1 di

(exp(
∑p
i=1 di))

1
σ2 Kmax

= c2
( 1

Kmax
)p

c
1

Kmax
3

= c2
1

(Kmax)p · c
1

Kmax
3

where c1 =
∏N
i=N̄+1

di
σ2 ·e

N

exp(N̄−p)·exp(
∑N
i=N̄+1

di
σ2 )

, c2 = c1
∏p
i=1 di
σ2p , and c3 = exp( 1

σ2

∑p
i=1 di).

Now let’s evaluate the first derivative of the denominator of Eq. (3.80).

((Kmax)p · c
1

Kmax
3 )′

= p(Kmax)p−1c
1

Kmax
3 + (Kmax)p

c
1

Kmax
3 log c3
−(Kmax)2

= p(Kmax)p−1c
1

Kmax
3 − (Kmax)p−2c

1
Kmax
3 log c3

= (Kmax)p−2c
1

Kmax
3 (pKmax− log c3)

= (Kmax)p−2c
1

Kmax
3 (pKmax−

1

σ2

p∑
i=1

di)

Since d1 > d2 > · · · > dp > σ2 Kmax,

pKmax−
1

σ2

p∑
i=1

di < 0 (3.80)

This implies the denominator of Eq. (3.80) is a decreasing function, and therefore, LR(Kmax)

is a increasing function with respect to Kmax.

(b) p→ p+ 1 as Kmax decreases

The LR(Kmax) is a continuous function since λp+1 = dp+1 at the moment that σ2 Kmax =

dp+1 and there is no discontinuity of λi. Therefore, LR(Kmax) is an increasing function in

this case.
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4. d1 > σ2Kmax and Kmax <
∑c
i=1 di

c−
∑N
N̄+1

(di−1)

R̂CN = Φ diag(λ∗)ΦH (3.81)

where

λ? =
[σ2

u
, . . . ,

σ2

u
, dp+1, . . . , dq,

σ2

uKmax
, . . . ,

σ2

uKmax

]
(3.82)

p, q, and N̄ are the vector of the eigenvalues of the estimate, the largest indices so that dp >
σ2

u ,

dq >
σ2

uKmax
, and dN̄ ≥ σ2, respectively.

Before we prove the increasing property of LR(Kmax), we show u decreases as Kmax increases.

u is the optimal solution of the optimization problem. In this case, u? is obtained by making

the first derivative of the cost function 0. Let u1 and u2 be the optimal solutions for Kmax1 and

Kmax2, respectively. Then,
∑N
i=1G

′
i(u1) = 0 for Kmax1. Since 1

di
≤ u1 ≤ 1

Kmax1
in this case,

for Kmax2 < Kmax1, the value of G′i(u1) decreases for di ≤ 1. G′i(u) also decreases for di > 1

and u ≤ 1
Kmax di

and remain same for di > 1 and 1
Kmax di

< u. Therefore,
∑N
i=1G

′
i(u1) < 0 for

Kmax2. Finally, since
∑N
i=1G

′
i(u2) must be zero for Kmax2, it is obvious that u1 < u2. This

shows that u decreases as Kmax increases.

Now we show the increasing property of LR(Kmax).

(a) within the range where p and q remain same

In this case, We show LR(u) is a decreasing function of u and an increasing function of

Kmax for each of u and Kmax.

i. Proof of LR(u) is a decreasing function.

LR(u)

=

∏p
i=1

udi
σ2 ·

∏N̄
i=q+1

Kmax udi
σ2 · eN

exp(
∑p
i=1

udi
σ2 +

∑q
i=p+1 1

+
∑N
i=q+1

Kmax udi
σ2 )

=
up
∏p
i=1

di
σ2 · uN−q

∏N̄
i=q+1

Kmax di
σ2 · eN

exp(u(
∑p
i=1

di
σ2 +

∑N
i=q+1

Kmax di
σ2 )

+q − p)

=
c1u

N−q+p

exp(c2u+ c3)

= c4
uN−q+p

cu5

where c1 =
∏p
i=1

di
σ2 ·

∏N̄
i=q+1

Kmax di
σ2 · eN , c2 =

∑p
i=1

di
σ2 +

∑N
i=q+1

Kmax di
σ2 , c3 = q − p,
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c4 = c1
ec3 , and c5 = ec2 . The first derivative of Eq. (3.83) is obtained by

LR′(u)

= (N − q + p)uN−q+p−1c−u5

− uN−q+p log c5 · c−u5

= uN−q+p−1c−u5 (N − q + p− u log c5)

= uN−q+p−1c−u5 (N − q + p− c2u)

= uN−q+p−1c−u5 (N − q + p

− u(

p∑
i=1

di
σ2

+
N∑

i=q+1

Kmax di
σ2

))

Since σ2

u ≤ dp,

N − q + p− u(

p∑
i=1

di
σ2

+
N∑

i=q+1

Kmax di
σ2

)

≤ N − q + p− u(
p

u
+
N − q
u
·Kmax)

= N − q −Kmax(N − q)

Since Kmax > 1, LR′(u) < 0 which implies LR(u) is a decreasing function with respect

to u.

ii. Proof of LR(Kmax) is an increasing function.

LR(Kmax)

=

∏p
i=1

udi
σ2 ·

∏N̄
i=q+1

Kmax udi
σ2 · eN

exp(
∑p
i=1

udi
σ2 +

∑q
i=p+1 1

+
∑N
i=q+1

Kmax udi
σ2 )

=
c1 Kmax

N−q

exp(c2 Kmax +c3)

= c4
Kmax

N−q

cKmax
5

where c1 =
∏p
i=1

udi
σ2 ·
∏N̄
i=q+1

udi
σ2 ·eN , c2 =

∑N
i=q+1

udi
σ2 , c3 =

∑p
i=1

udi
σ2 +q−p, c4 = c1

ec3 ,
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and c5 = ec2 . The first derivative is

LR′(Kmax)

= (N − q) Kmax
N−q−1 c−Kmax

5

− Kmax
N−q log c5 · c−Kmax

5 (3.83)

= Kmax
N−q−1

× c−Kmax
5 (N − q −Kmax log c5) (3.84)

= Kmax
N−q+p−1

× c−u5 (N − q − c2 Kmax) (3.85)

= Kmax
N−q+p−1

× c−u5 (N − q −Kmax

N∑
i=q+1

udi
σ2

) (3.86)

Since σ2

uKmax
≤ dq+1,

N − q −Kmax

N∑
i=q+1

udi
σ2

≥ N − q −Kmax(
N − q
Kmax

) = 0 (3.87)

Therefore, LR′(Kmax) ≥ 0 and LR(Kmax) is an increasing function with respect to

Kmax.

These two proofs show that LR(u,Kmax) is an increasing function with respect to Kmax.

(b) p and q changes as Kmax decreases

The LR(u,Kmax) is a continuous function, and therefore, LR(u,Kmax) is an increasing

function in this case.

Lemma 5 formally proves that the there exist only one optimal condition number and therefore we

can find the optimal condition number numerically. The algorithm of finding the optimal condition

number is shown in Algorithm 3. We first set the initial condition number as the ML condition number

obtained by [25]. Then we increase or decrease the condition number to the direction where the LR

value decreases. Reducing the stepsize as the direction is reversed, we find the optimal condition

number as precisely as we want.
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Algorithm 3 The proposed algorithm to select condition number via EL

1: Obtain the ML solution of the condition number KmaxML
by the method in [25] and set the initial

value of Kmax = KmaxML

2: Set the initial step, ∆ = Kmax/100
3: Evaluate LR(Kmax −∆), LR(Kmax), LR(Kmax + ∆)

• if |LR(KmaxML
+ ∆)− LR0 | < |LR(KmaxML

)− LR0 |
→ increase Kmax by ∆ until it does not hold.
→ then ∆ = −∆/10

• elseif |LR(KmaxML
+ ∆)− LR0 | > |LR(KmaxML

)− LR0 |
→ decrease Kmax by ∆ until it does not hold.
→ then ∆ = −∆/10

4: Repeat Step 3 until ∆ < 0.0001.

3.3 Experimental Validation

3.3.1 Experimental setup

In this section, we compare the proposed methods with alternative covariance estimation algorithms

and parameter estimation algorithms. Two data sets are used in the experiments: 1) a radar covariance

simulation model and 2) the KASSPER dataset [8].

First, we consider a radar system with an N -element uniform linear array for the simulation model.

The overall covariance which is composed of jammer and additive white noise can be modeled by

R(n,m) =
J∑
i=1

σ2
i sinc[0.5βi(n−m)φi]e

j(n−m)φi + σ2
aδ(n,m) (3.88)

where n,m ∈ {1, . . . , N}, J is the number of jammers, σ2
i is the power associated with the ith jammer,

φi is the jammer phase angle with respect to the antenna phase center, βi is the fractional bandwidth,

σ2
a is the actual power level of the white disturbance term, and δ(n,m) has the value of 1 only when

n = m and 0 otherwise. This simulation model has been widely and very successfully used in previous

literature [24, 25, 74, 33] for performance analysis.

Data from the L-band data set of KASSPER program is the other data set used in our experiments.

Note that the KASSPER data set exhibits two desirable characteristics: 1) the low-rank structure of

clutter and 2) the true covariance matrices for each range bin have been made available. These two

characteristics facilitate comparisons via powerful figures of merit. The L-band data set consists of a

data cube of 1000 range bins corresponding to the returns from a single coherent processing interval

from 11 channels and 32 pulses. Therefore, the dimension of observations (or the spatio-temporal

product) N is 11× 32 = 352. Other key parameters are detailed in Table 2.1.

We measure the normalized signal to interference and noise ratio (SINR). The normalized SINR
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measure is commonly used in the radar literature and given by

η =
|sHR̂−1s|2

|sHR̂−1RR̂−1s||sHR−1s|
(3.89)

where s is the spatio-temporal steering vector, R̂ is the data-dependent estimate of R, and R is the

true covariance matrix. It is easily seen that 0 < η < 1 and η = 1 if and only if R̂ = R. The SINR is

plotted in decibels in all our experiments, that is, SINR(dB) = 10 log10 η. Therefore, SINR(dB) ≤ 0.

For the KASSPER data set, since the steering vector is a function of both azimuthal angle and Doppler

frequency, we obtain plots as a function of one variable (azimuthal angle or Doppler) by marginalizing

over the other variable. We evaluate and compare different covariance estimation techniques and

parameter selection methods in the following three subsections:

• Sample Covariance Matrix: The sample covariance matrix is given by S = 1
KZZH . It is

well known that S is the unconstrained ML estimator under Gaussian disturbance statistics. We

refer to this as SMI.

• Fast Maximum Likelihood: The fast maximum likelihood (FML) [24] uses the structural

constraint of the covariance matrix. The FML method just involves the eigenvalue decomposition

of the sample covariance and perturbing eigenvalues to conform to the structure. The FML also

can be considered as the RCML estimator with the rank which is the greatest index i satisfying

λi > σ2 where λi’s are the eigenvalues of the sample covariance in descending order. Therefore,

a rank can be considered as an output of the FML. The FML’s success in radar STAP is widely

known [11].

• Rank Constrained ML Estimators: The RCML estimator with the rank or the rank and

the noise level obtained by the proposed methods using the expected likelihood approach. The

rank is obtained by the EL approach in the case of the imperfect rank constraint and both of

the rank and the noise level are obtained by the EL approach in the case of imperfect rank and

noise power constraints. We refer to these as RCMLEL.

• Chen et al. Rank Selection Method: Chen et al. [84] proposed a statistical procedure for

detecting the multiplicity of the smallest eigenvalue of the structured covariance matrix using

statistical selection theory. The rank can be estimated from their methods using pre-calculated

parameters. We refer to this method as RCMLChen .

• AIC: Akaike [77] proposed the information theoretic criteria for model selection. The AIC

selects the model that best fits the data for given a set of observations and a family of models,

that is, a parameterized family of probability densities. Wax and Kailath [79] proposed the

method to determine the number of signals from the observed data based on the AIC. We

compare Wax and Kailath’s method.
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Figure 3.4: Normalized SINR in dB versus number of training samples K (N = 20) for the simulation
model.

• Condition number constrained ML estimators: The maximum likelihood estimation

method of the covariance matrix with a condition number [25] proposed by Aubry et al. is

considered for evaluating the performance with three different condition numbers. 1) CNCML

: the condition number obtained by the proposed method in [25], 2) CNCMLEL : the condition

number obtained by the expected likelihood approach, and 3) CNCMLtrue : the true condition

number.

3.3.2 Imperfect rank constraint

First, we compare the rank estimation method proposed in Section 3.2.1 with alternative algorithms

including SMI, FML, AIC, and Chen’s algorithm. We plot the normalized SINR (in dB) versus the

number of training samples, 20, 30, and 40 in Fig. 3.4 for the simulation model. The SINR values are

obtained by averaging SINR values from 500 Monte Carlo trials. It is shown that the SINR values

increases monotonically as K increases. The RCMLELexhibits the best performance in all training

regimes. Particularly, the difference between RCMLELand other methods increases when training

samples are limited.

Figure 3.5 shows the normalized SINR values for various number of training samples for the

KASSPER data set. We plot the averaged SINR values in decibel over either azimuth angle or Doppler

frequency domain. The left and right column show the results for angle and Doppler, respectively.

Similarly to the results for the simulation model, RCMLELoutperforms all the other compared methods

in all training regime. This implies that the rank obtained by the EL approach is more accurate and

closer to the rank predicted by Brennan rule (M + P − 1 = 42) than any other methods.

Realistic case of contaminated observations: In practice, homogeneous training samples

are hard to obtain and the received signals are often corrupted by target information. Therefore,

it is meaningful to compare the performance for nonhomogeneous observation to investigate which
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(c) K = 1.5N = 528

−4 −3 −2 −1 0 1 2 3 4
−6

−5

−4

−3

−2

−1

0

Normalized Doppler frequency

Normalized SINR in dB vs. Doppler: 528 training samples

 

 

SMI
FML
RCMLChen

RCMLEL

AIC

(d) K = 1.5N = 528
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(e) K = 2N = 704
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(f) K = 2N = 704

Figure 3.5: Normalized SINR versus azimuthal angle and Doppler frequency for the KASSPER data
set.

algorithm indeed works well and is robust in practice. In this case, the received signal is given by

z = αs + d (3.90)
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(a) K = N = 352
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(b) K = N = 352
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(c) K = 1.5N = 528
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(d) K = 1.5N = 528
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(e) K = 2N = 704
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(f) K = 2N = 704

Figure 3.6: Normalized SINR versus azimuthal angle and Doppler frequency for the KASSPER data
set.

where s and d are the deterministic steering vector and stochastic disturbance vector, respectively.

Figure 3.6 shows the normalized SINR values when a half of the training samples contain s with α = 50.

The gap between RCMLELand the others is bigger than that in Figure 3.5. In particular, AIC shows

compatible performance in homogeneous cases though, Figure 3.6e and Figure 3.6f show that the
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Figure 3.7: Normalized SINR in dB versus number of training samples K (N = 20) for the simulation
model.

difference between AIC and RCMLELis larger for non-homogeneous case. Therefore the results show

remarkably that RCMLELstill excels under target contamination or heterogeneous training where

other techniques face severe degradation in performance.

3.3.3 Imperfect rank and noise power constraints

In this section, we show experimental results for estimation of both a rank and a noise power via

the expected likelihood approach, which is proposed in Section 3.2.2. In this case, we assume that

both the rank and the noise power are unknown and to be estimated for both the simulation model

and the KASSPER data set. Since the previous works such as AIC and Chen’s algorithm are for

only estimating the rank and can not be extended to estimate both the rank and the noise power, we

compare the proposed EL method with the sample covariance, FML, and the RCML estimator with

a prior knowledge of the rank. For the RCML estimator, we employ the number of jammers (r = 5)

and the Brennan rule (r = 42) as the clutter rank for the simulation model and the KASSPER data

set, respectively. In addition, since the FML method requires a prior knowledge of the noise power,

we calculate and use the maximum likelihood estimate of the noise power for a rank given by a prior

knowledge for the FML.

Figure 3.7 shows the performance of various estimators in the sense of the normalized SINR values

for the simulation model. Similarly to the case of only rank estimation, the proposed method show

the best performance in all training regimes.

Figure 3.8 shows the performance of the methods in the normalized SINR for the KASSPER data

set. The proposed method is comparable with or slightly better than the RCML estimator using the

rank by Brennan rule. This means that the proposed method estimates both the rank and the noise

power adaptively from training samples whereas the rank by Brennan rule is fixed regardless of the

training samples.
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(b) K = N = 352
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(c) K = 1.5N = 528
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Figure 3.8: Normalized SINR versus azimuthal angle and Doppler frequency for the KASSPER data
set.

3.3.4 Imperfect condition number constraint

Now we show experimental results for the condition number estimation method proposed in Section

3.2.3. We compare the proposed method, denoted by CNCMLEL, with four different covariance

estimation methods, the sample covariance matrix (SMI), FML, CNCML , and CNCMLtrue .

Tables 3.1 and 3.2 show the normalized SINR values for the simulation model. We analyze five

different scenarios with different parameters of the simulated covariance model given by Eq. (3.88).

We use the same parameters as those used in [25] to evaluate the performances and they are shown
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σ2 K SMI FML CNCML CNCMLEL CNCMLtrue

20 -9.3785 -0.5195 -0.5212 -0.4822 -0.5200
-5 30 -4.2579 -0.4242 -0.4257 -0.4256 -0.4250

40 -2.7424 -0.3460 -0.3476 -0.3476 -0.3468

20 -9.3196 -0.5511 -0.5521 -0.5141 -0.5515
0 30 -4.2276 -0.4202 -0.4221 -0.4220 -0.4210

40 -2.7649 -0.3513 -0.3530 -0.3528 -0.3521

20 -9.0922 -0.5269 -0.5279 -0.4875 -0.5272
5 30 -4.2172 -0.4348 -0.4364 -0.4362 -0.4357

40 -2.7300 -0.3484 -0.3503 -0.3505 -0.3493

20 -9.3511 -0.5355 -0.5305 -0.4998 -0.5360
10 30 -4.1955 -0.4164 -0.4180 -0.4175 -0.4175

40 -2.7491 -0.3501 -0.3515 -0.3518 -0.3509

(a)

σ2 K SMI FML CNCML CNCMLEL CNCMLtrue

20 -9.3069 -1.7371 -1.7322 -1.7358 -1.7350
-5 30 -4.1795 -1.2399 -1.2388 -1.2347 -1.2397

40 -2.7535 -0.9496 -0.9492 -0.9456 -0.9493

20 -9.1354 -1.6944 -1.6928 -1.7027 -1.6940
0 30 -4.2345 -1.2986 -1.2987 -1.2955 -1.2990

40 -2.7545 -1.0041 -1.0043 -1.0023 -1.0046

20 -9.2524 -1.3976 -1.4016 -1.3244 -1.4000
5 30 -4.2309 -1.0737 -1.0784 -1.0666 -1.0762

40 -2.7523 -0.8848 -0.8876 -0.8818 -0.8866

20 -9.3660 -1.2567 -1.2569 -1.2115 -1.2570
10 30 -4.3013 -0.9526 -0.9545 -0.9450 -0.9537

40 -2.7350 -0.7171 -0.7197 -0.7139 -0.7186

(b)

σ2 K SMI FML CNCML CNCMLEL CNCMLtrue

20 -9.3702 -0.5340 -0.5349 -0.4925 -0.5340
-5 30 -4.2791 -0.4302 -0.4316 -0.4315 -0.4308

40 -2.7856 -0.3493 -0.3510 -0.3509 -0.3501

20 -9.2898 -0.5485 -0.5501 -0.5104 -0.5491
0 30 -4.2648 -0.4202 -0.4219 -0.4220 -0.4209

40 -2.7274 -0.3604 -0.3621 -0.3621 -0.3611

20 -9.0582 -0.5318 -0.5328 -0.4899 -0.5322
5 30 -4.1548 -0.4142 -0.4155 -0.4152 -0.4149

40 -2.7655 -0.3515 -0.3531 -0.3533 -0.3521

20 -9.3632 -0.5352 -0.5363 -0.4974 -0.5360
10 30 -4.2728 -0.4328 -0.4348 -0.4349 -0.4337

40 -2.7577 -0.3538 -0.3554 -0.3547 -0.3547

(c)

Table 3.1: Normalized SINR for various values of parameters for the simulation model.

in Table 5.2(c).

For the narrowband scenarios (Bf = 0) in Table 5.1(a) and Table 5.1(c), CNCMLEL outperforms

the alternatives for the limited training regime and FML is the best in other training regimes. Note

68

DISTRIBUTION A: Approved for public release



σ2 K SMI FML CNCML CNCMLEL CNCMLtrue

20 -9.0316 -1.7161 -1.7131 -1.7634 -1.7150
-5 30 -4.1465 -1.1704 -1.1691 -1.1659 -1.1693

40 -2.7727 -0.9390 -0.9384 -0.9351 -0.9387

20 -9.2091 -1.6706 -1.6701 -1.6674 -1.6706
0 30 -4.2004 -1.2681 -1.2682 -1.2633 -1.2682

40 -2.7423 -1.0102 -1.0117 -1.1009 -1.0106

20 -9.3538 -1.3980 -1.4028 -1.3216 -1.4004
5 30 -4.2203 -1.0869 -1.0910 -1.0785 -1.0889

40 -2.7079 -0.8694 -0.8721 -0.8666 -0.8713

20 -9.221 -1.2446 -1.2455 -1.1982 -1.2452
10 30 -4.2116 -0.9428 -0.9460 -0.9382 -0.9444

40 -2.7563 -0.7235 -0.7264 -0.7226 -0.7253

(a)

σ2 K SMI FML CNCML CNCMLEL CNCMLtrue

20 -9.2679 -1.1593 -1.1616 -1.1150 -1.1610
-5 30 -4.2234 -0.9262 -0.9286 -0.9242 -0.9278

40 -2.8271 -0.7705 -0.7729 -0.7712 -0.7723

20 -9.2934 -0.9052 -0.9051 -0.8422 -0.9059
0 30 -4.1617 -0.6909 -0.6920 -0.6862 -0.6924

40 -2.7387 -0.5711 -0.5724 -0.5676 -0.5725

20 -9.4154 -0.8398 -0.8334 -0.7909 -0.8399
5 30 -4.2284 -0.6273 -0.6231 -0.6070 -0.6278

40 -2.7208 -0.5034 -0.5022 -0.4945 -0.5046

20 -9.1447 -0.7388 -0.7225 -0.6815 -0.7392
10 30 -4.2046 -0.5931 -0.5803 -0.5535 -0.5931

40 -2.7241 -0.4821 -0.4738 -0.4576 -0.4827

(b)

J σ2
J φ Bf

(a) 1 30 20◦ 0

(b) 1 30 20◦ 0.3

(c) 3 [30 30 30] [20◦ 40◦ 60◦] [0 0 0]

(d) 3 [30 30 30] [20◦ 40◦ 60◦] [0.3 0.3 0.3]

(e) 3 [10 20 30] [20◦ 40◦ 60◦] [0.2 0 0.3]

(c)

Table 3.2: Normalized SINR for various values of parameters for the simulation model.

that the gap between CNCMLEL and FML (at most 0.002) is much smaller than that of the limited

training regime (at least 0.3).

On the other hand, for the wideband scenarios in Tables 5.1(b), 5.2(a), and 5.2(b), CNCMLEL

shows the best performance in most cases including CNCMLtrue using the true condition number.

The experimental results for the KASSPER data set are shown in Figure 3.9. We do not plot

the sample covariance matrix to clarify the difference among the estimators. In every case, FML,
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Figure 3.9: Normalized SINR versus azimuthal angle and Doppler frequency for the KASSPER data
set. (a) and (b) for K = N = 352, (c) and (d) for K = 1.5N = 528, and (e) and (f) for K = 2N = 704

CNCML, and CNCMLtrue are very close to one another and CNCMLEL is the best estimator. Note

that CNCMLEL is based on the same algorithm as CNCML and CNCMLtrue and differs from them

in the point that CNCMLEL uses a different condition number which is estimated by the expected

likelihood approach. Again, this shows that the expected likelihood criterion is really useful and
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powerful to estimate parameters which is imperfectly known and leads to an adaptive and robust

covariance estimator.

3.4 Conclusion

We propose robust covariance estimation algorithms which automatically determine the optimal values

of practical constraints via the expected likelihood criterion for radar STAP in this chapter. Three

different cases of practical constraints which is exploited in recent works including the rank constrained

ML estimation and the condition number constrained ML estimation are investigated. Significant

analytic results and proofs are derived for each case. Uniqueness of the optimal values of the rank

constraint and the condition number constraint is formally proved and a closed form solution of the

noise level is derived. Experimental results show that the estimators with the constraints obtained by

the expected likelihood outperform previous works which uses constraints obtained by other parameter

estimation methods including the maximum likelihood solution of the constraints.
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